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Derivatives



Derivatives

• Recall that the derivative of a function f (x) at the point a, notated f ′(a), can beinterpreted as the “slope” of the function at the point a.• More properly, it is the slope of the line tangent to f (x) at the point (a, f (a)).
Definition: Derivative

f ′(x) = lim
h→0

f (x + h) − f (x)
h
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Example

• As an example, let’s compute the derivative of f (x) = x2 from the definition: wefirst write
f (x + h) − f (x)

h
= (x + h)2 − x2

h= x2 + 2xh + h2 − x2

h
= 2xh + h2

h
= 2x + h

• Therefore
f ′(x) = lim

h→0
(2x + h) = 2x
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Common Derivatives

Theorem: Useful Derivatives

(a) ddx ex = ex

(b) ddx ax = ax ln(a)
(c) ddx ln(x) = 1

x

(d) ddx sin(x) = cos(x)
(e) ddx cos(x) = − sin(x)
(f ) ddx arctan(x) = 1

1 + x2
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Derivative Rules

Theorem: Multiplication Rule

ddx [f (x)g (x)] = f ′(x)g (x) + f (x)g ′(x)
Theorem: Division Rule

ddx
[
f (x)
g (x)

] = f ′(x)g (x) − f (x)g ′(x)[g (x)]2
Theorem: Chain Rule

ddx [
f
(
g (x))] = f ′(g (x)) · g ′(x)

5



Example

• As an example, suppose we wish to evaluate ddx [
xecos(x)]

• By the Product Rule,
ddx [

xecos(x)] = (1)ecos(x) + x · ddx [
ecos(x)]

• To evaluate the final derivative on the RHS, we use the Chain Rule:ddx [
xecos(x)] = (1)ecos(x) + x · ecos(x) · (− sin(x))

or, cleaning up terms a bit,
ddx [

xecos(x)] = ecos(x) [1 − x sin(x)]
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L’Hôpital’s Rule

Formula: L’Hôpital’s Rule

lim
x→c

[
f (x)
g (x)

] = lim
x→c

f ′(x)
g ′(x)provided we have an indeterminate form of the type 0/0 or ∞/∞.
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Integrals



Indefinite Integrals

• What is the “opposite” of differentiation? In other words, given a function f (x) canI find a function F (x) such that F ′(x) = f (x)?• Yes! Such a function is called a antiderivative.• For example, if f (x) = 2x , I can recognize that ddx (x2) = 2x , meaning F (x) = x2 isan antiderivative of f (x) = 2x .• Wait a minute; an antiderivative? Are antiderivatives not unique?• No, they are not. Take our f (x) = 2x example again. It is true thatddx (x2 + 4) = 2x . Therefore, by our definition of an antiderivative, F (x) = x2 + 2 isalso an antiderivative.• In general, a function f (x) has a family of antiderivatives, differing by a constant.So, for our f (x) = 2x example, we would say that the class of antiderivatives of
f (x) is F (x) = x2 + C .

• Often times we will use the symbol ş

f (x) dx to denote the class of antiderivativesof f (x); for example,
ż

2x dx = x2 + C
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Definite Integrals

ż b

a
f (x) dx = Area under f (x)

t

f (t)

a b
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Definite Integrals

ż

R
f (x) dx = Area under f (x),

above the region R

t

f (t)

a b c d

R = [a, b) ∪ (c , d)
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Fundamental Theorem of Calculus

• Hold on; so we use ş to denote both definite and indefinite integrals? Why?• It turns out there is a very important link between definite and indefiniteintegrals!
Theorem: Fundamental Theorem of Calculus

(I) ddx
ż g (x)
f (x) h(x) dx = h(g (x)) · g ′(x) − h(f (x)) · f ′(x)

(II) If F (x) is an antiderivative of f (x), ż b

a
f (x) dx = F (b) − F (a)

• Some Food for Thought: Does the FTC part (II) capture the uniqueness of thedefinite integral?
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Example

• As an example: what is the area underneath the graph of the function
f (x) = cos(x) between x = 0 and x = π/2?• In other words, we seek

ż π/2

0
cos(x) dx

• We know that the primary antiderivative of f (x) = cos(x) is F (x) = sin(x).Therefore, by the Fundamental Theorem of Calculus,
ż π/2

0
cos(x) dx = [ sin(x)]x=π/2

x=0

= sin ( π
2

)
− sin(0) = 1
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Integration by u−substitution



Derivation

• Start with the chain rule for derivatives:ddx f [g (x)] = f ′[g (x)] · g ′(x)
• Now, integrate both sides with respect to x :

Formula: Integration by u−substitution

f [g (x)] = ż

f ′[g (x)] · g ′(x) dx (1)
• Often times, we will abbreviate u := g (x) and du = g ′(x) dx .
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Example 1

Suppose we wish to evaluate ż

eay dy for some fixed a > 0.
• Set u = ay .• Thus, du = a dy , or equivalently, dy = 1/a du• Returning to the integral:

ż

eay dy = ż

eu · 1
a

du = 1

a

ż

eu du = 1

a
eu + C

• Finally, convert back to y to see
ż

eay dy = 1

a
eay + C
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Integration by Parts



Derivation

• Start with the product rule for derivatives:
ddx [f (x)g (x)] = f ′(x)g (x) + f (x)g ′(x)

• Integrate both sides w.r.t. x :
f (x)g (x) = ż

f ′(x)g (x) dx + ż

f (x)g ′(x) dx
• Re-arrange terms to see

ż

f (x)g ′(x) dx = f (x)g (x) −
ż

f ′(x)g (x) dx
• Let u := f (x) and v := g (x) so du = f ′(x) dx and dv = g ′(x) dx , so we obtain

Formula: Integration by Parts

ż

u dv = uv −
ż

v du (2)

18



Example 2

Suppose we wish to evaluate ż

x cos(x) dx
• Set u = x and dv = cos(x) dx .• Then du = dx and v = ş cos(x) dx = sin(x)• Thus, by equation (2),

ż

x cos(x) dx = x sin(x) −
ż sin(x) dx = x sin(x) + cos(x) + C
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Example 3

Now, suppose we wish to evaluate ż

x2 cos(x) dx
• Set u = x2 and dv = cos(x) dx .• Then du = 2x dx and v = ş cos(x) dx = sin(x)• Thus, by equation (2),

ż

x2 cos(x) dx = 2x sin(x) −
ż

2x sin(x) dx
• To evaluate the integral on the RHS, we would need to use Integration by Partsagain!• What if we had to evaluate ş

x5 cos(x) dx ; then there would be five differentintegrations by parts!
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Tabular Method for Integration by
Parts



Illustration via Example

Let us return to ż

x2 cos(x) dx .

• We still need to choose u and dv as above.• Now, we begin constructing a table row by row.• First write u on the left, and dv on the right:
x2 cos(x)

• Now, we move down one row.• On the left, we differentiate; on the right, we integrate.
x2

2x

cos(x)
sin(x)
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Illustration via Example

• We continue until we reach 0 in the leftmost column:
x2

2x

2

0

cos(x)
sin(x)

− cos(x)
− sin(x)
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Illustration via Example

• Now, we connect diagonal terms, and place an alternating “+” and “−” signabove these connectors:
x2

2x

2

0

cos(x)
sin(x)

− cos(x)
− sin(x)

+

−

+
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Illustration via Example

• Our final answer is obtained by multiplying along the connectors, and attachingthe corresponding sign:
x2

2x

2

0

cos(x)
sin(x)

− cos(x)
− sin(x)

+

−

+ =⇒ (+)x2 sin(x) + (−)[−2x cos(x)] + (+)[−2 sin(x)]
or, after cleaning terms up,

x2 sin(x) + 2x cos(x) − 2 sin(x) + C

• You can verify (through differentiation) that this is indeed the correct answer!
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Illustration via Example

• To see the benefit of this method, let us compute ş

x5 cos(x) dx .
x5

5x4

20x3

60x2

120x

120

0

cos(x)
sin(x)

− cos(x)
− sin(x)

cos(x)
sin(x)

− cos(x)

+

−

+

−

+

−

x5 sin(x) + 5x4 cos(x) − 20x3 sin(x) − 60x2 cos(x) + 120x sin(x) + 120 cos(x) + C
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Integration by Inverse
Trigonometric Substitution



Inverse Trig Sub

• I won’t spend too much time deriving this one; please consult your CalculusTextbooks for a refresher.• I will work through an example with you, though: say we want to evaluate
ż √

1 − x2 dx
• We let x = sin(θ) so taht dx = cos(θ) dθ; additionally,

1 − x2 = 1 − sin2(θ) = cos2(θ), so
ż √

1 − x2 dx = ż cos(θ) · cos(θ) dθ = ż cos2(θ) dθ

• From here, we recall cos2(θ) = 1

2
[1 + cos(2θ)]

meaning
ż cos2(θ) dθ = ż

1

2
[1 + cos(2θ)] dθ = 1

2

[
θ + 1

2
sin(2θ)] + C
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Inverse Trig Sub

• Additionally, sin(2θ) = 2 sin(θ) cos(θ)meaning
ż cos2(θ) dθ = 1

2

[
θ + 1

2
sin(2θ)] + C = 1

2
[θ + sin(θ) cos(θ)] + C

• Our final task is to rewrite everything back in terms of x .• Since x = sin(θ), we see that θ = arcsin(x). Additionally, since sin(θ) = x , we candraw a right triangle:
θ√

1 − x2

x1

• From this triangle we see that cos(θ) = √
1 − x2.

29



Inverse Trig Sub

• Therefore, putting everything together:
ż √

1 − x2 dx = 1

2
[θ + sin(θ) cos(θ)] + C

= 1

2

[arcsin(x) + x
√

1 − x2
] + C
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Partial Fraction Decomposition



Partial Fraction Decomposition

• Again, in the interest of time, I shall not rigorously define integration by PartialFraction Decomposition, opting instead to work through an example.• Suppose we wish to evaluate
ż

1

x2 + 5x + 6
dx

• First note that x2 + 5x + 6 = (x + 2)(x + 3). This means, by PFD (Partial FractionDecomposition), the integrand can be written as
1(x + 2)(x + 3) = A

x + 2
+ B

x + 3• Our goal is to find A and B . We do so by first bringing everything on the RHS toa single fraction:
1(x + 2)(x + 3) = A(x + 3) + B(x + 2)(x + 2)(x + 3) = x(A + B) + (3A + 2B)(x + 2)(x + 3)• Matching terms, we find the following system of equations:{

A + B = 0

3A + 2B = 1
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Partial Fraction Decomposition

• We can now solve this system however we like; once you do so, you should find
A = 1 and B = −1, meaning

1(x + 2)(x + 3) = 1

x + 2
− 1

x + 3

• Therefore, returning to our original integral,
ż

1

x2 + 5x + 6
dx = ż

(
1

x + 2
− 1

x + 3

) dx
= ż

1

x + 2
dx −

ż

1

x + 3
dx

= ln |x + 2| − ln |x + 3| + C = ln ∣∣∣∣ x + 2

x + 3

∣∣∣∣ + C
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