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Sequences



Sequences

• A sequence is a list of numbers, often indexed with a pattern.• For example: {1, 2, 3, 4, 5} is a finite sequence (since it has only a finite numberof terms), where the k th term is simply equal to k for k ∈ {1, 2, 3, 4, 5}.• Another example: {2, 4, 6, 8, 10, 12, · · · }. Here the “· · · ” mean this is a infinitesequence; the k th term is simply 2k for any k ∈ N.
• In general, if the k th term of a sequence is given by ak , we write the sequence as

{ak}∞
k=1

or just {ak} for short.• For instance, the first sequence above can be notated {k}5k=1 and the second one canbe notated {2k}∞
k=1
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Sequences

• Here are some abstract examples of sequences:

k

ak

k

bk

k

ck

k

dk
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Sequences

• Qualitatively, we can see some things:
• As k gets large, both {ak} and {ck} seem to get arbitrarily close to some fixednumber.• This is not the case for {bk} or {dk}. The sequence {bk} makes a beeline for ∞,whereas the sequence {dk} just keeps oscillating between two values.
• This leads us to the notion of convergence:

Definition

We say that a sequence {ak} converges to the value L if we can make akarbitrarily close to L. More mathematically:
(∀ε > 0)(∃N ∈ N) [k > N =⇒ |ak − L| < ε]
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Series



Partial Sums

• Consider a sequence A := {ak}∞
k=1.• a1 is a number.• a1 + a2 is a number.• a1 + a2 + a3 is a number.• In general, a1 + · · · + an for any fixed n ∈ N is a number.• Therefore, let us consider the sequence S prescribed by:

S := {a1, a1 + a2, a1 + a2 + a3, · · · }

• The “pattern” of the sequence S is that Sn , the nth element of S , is the sum of thefirst n elements of A:
Sn = a1 + · · · + an =: n∑

k=1

ak

• This sequence S = {Sn}∞
n=1 is called the sequence of partial sums of the originalsequence ak .
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Partial Sums

• Example: What is the nth partial sum of the sequence {k}∞
k=1?• In other words, we seek a closed-form expression for 1 + 2 + · · · + n, for any fixed

n ∈ N.• Here’s the trick: let Sn := 1 + · · · + n denote the quantity we seek. Notice whathappens when we add together two copies of Sn:
Sn = 1 + 2 + 3 + · · · + (n − 1) + n+ Sn = n + (n − 1) + (n − 2) + · · · + 2 + 1

2Sn = (n + 1) + (n + 1) + (n + 1) + · · · + (n + 1) + (n + 1)• On the LHS we have 2Sn . On the RHS, we have n copies of (n+1); in other words,
2Sn = n(n + 1) ⇐⇒ Sn = n(n + 1)

2

• Using sigma notation, we have just shown that
n∑

k=1

k = n(n + 1)
2
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Partial Sums

• Example: What is the nth partial sum of the sequence {pk}∞
k=0, where p ∈ R is afixed constant?• In other words, we seek a closed-form expression for 1+ p + p2 + · · · + pn , for anyfixed n ∈ N.• Let Sn := 1 + p + p2 + · · · + pn . Multiplying each term by p, we can see that

p · Sn = p + p2 + p3 + p4 + · · · + pn + pn+1

• Let’s see what happens when we subtract the second equation from the first:
− Sn = 1 + p + p2 + p3 + · · · + pn

p · Sn = p + p2 + p3 + · · · + pn + pn+1

Sn − p · Sn = 1 + 0 + 0 + 0 + · · · + 0 − pn+1

• In other words, (1 − p) · Sn = 1 − pn+1 which implies that
Sn = 1 − pn+1

1 − p

• Using sigma notation, we have just shown that
n∑

k=0

pk = 1 − pn+1

1 − p
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Infinite Series

• Since the sequence of partial sums {Sn}∞
n=1 of a sequence {ak}∞

k=1 is, well, asequence, it makes sense to talk about its convergence.• If Sn converges to some value S , we write
∞∑
k=1

(ak ) = S

• In other words,
∞∑
k=1

(ak ) = lim
n→∞

[
n∑

k=1

ak

]
• So, to evaluate an infinite summation, we first take the sum up to some fixedfinite value n, find a closed-form expression for the resulting sum, and then let ngo to ∞.
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Geometric Series

• As an example, suppose we wish to determine whether or not ∞∑
k=0

pk converges.
• We have already shown that

n∑
k=0

pk = 1 − pn+1

1 − p

so the question really boils down to whether or not the sequence
1 − pn+1

1 − phas a limit.• There is a result that states limn→∞(pn) = 0 if |p| < 1; if |p| > 1 then {pn}ndiverges. Hence, our infinite series converges only when |p| < 1, in which case itevaluates to
∞∑
n=0

pn = 1

1 − p
if |p| < 1

• This is a VERY important result; it is called the geometric series.
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Geometric Series

• As a more concrete example, consider ∑∞
k=0

(
1
2

)k . Since p = (1/2) < 1, the seriesconverges and
∞∑
k=0

(
1

2

)k = 1

1 −
(
1
2

) = 2

• An extension of the Geometric Series states that
∞∑
k=a

pk = pa

1 − p
if |p| < 1
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Taylor and MacLaurin Expansions



Taylor and MacLaurin Expansions

• There exists a very powerful theorem from Calculus, which effectively states thefollowing: given a “nice”1 enough function f (x),
f (x) = ∞∑

n=0

f (n)(a)
n! (x − a)n (1)

for any a ∈ R. The sum on the RHS is known as the Taylor Series Expansion (orsimply the Taylor Expansion) of f (x) about the point a.
• Setting a = 0 in equation (2) yields the so-called MacLaurin Series Expansion(aka MacLaurin Expansion) of f (x):

f (x) = ∞∑
n=0

f (n)(0)
n! xn (2)

1For our purposes, “nice” can be considered synonymous with “infinitely differentiable”
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Example: Exponential Series

Problem: Derive the MacLaurin Expansion of f (x) = ex .
• Note that f (x) = f ′(x) = f ′′(x) = · · · = ex ; that is, f (n)(x) = ex , ∀n ∈ N. Thisallows us to conclude that f (n)(0) = e0 = 1, and

ex = ∞∑
n=0

1

n! xn = ∞∑
n=0

xn

n!
• For example,

∞∑
n=0

2n

n! = e2 ≈ 7.3891
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Manipulating Sums



Differentiation of Sums

• It turns out, under certain conditions (over which we will not concern ourselvesfor the purposes of this class), derivatives and infinite sums commute.• As an example, consider the geometric series for a fixed common ratio p < 1:
∞∑
k=0

pk = 1

1 − p

• Differentiating both sides w.r.t. p yields
ddp
( ∞∑

k=0

pk

) = ddp
(

1

1 − p

) = 1(1 − p)2
• On the LHS, we can pass the derivative through the sum to obtain

ddp
( ∞∑

k=0

pn

) = ∞∑
k=1

ddp (pk ) = ∞∑
k=1

kpk−1

• Note that after passing the derivative through, we started the sum from k = 1 instead of
k = 0. This is because the first term of our original sequence is p0 = 1, which doesn’tdepend on p: hence, when we take the derivative of that term w.r.t. p we simply get 0.
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Differentiation of Sums

• Putting the pieces together, we find
∞∑
k=1

kpk−1 = 1(1 − p)2
or, restarting the sum on the LHS from k = 0 (since [kpk−1]k=0 = 0) andmultiplying both sides by p,

∞∑
k=0

kpk = p(1 − p)2 if |p| < 1

• Perhaps this method will be useful on one of the Worksheet Problems for thisweek...

17



Integration of Sums

• Infinite sums can be integrated term-by-term as well!• For example, let us again start with the geometric series assuming |p| < 1:
1

1 − p
= ∞∑

k=0

pk

• Replacing p with (−p2) yields
1

1 + p2
= ∞∑

k=0

(−1 · p2)k = ∞∑
k=0

(−1)kp2k
• Integrate both sides w.r.t. p:

ż
(

1

1 + p2

) dp = ż

[ ∞∑
k=0

(−1)kp2k] dp
• Once the dust settles, we have

∞∑
k=0

(−1)k(2k + 1)p2k+1 = arctan(p) if |p| < 1
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Re-Indexing a Sum

• There’s another tool I’d like to bring your attention to. I’ll introduce this by wayof an example.• We already have a formula for the sum of the first n natural numbers. What if weseek a formula for the sum of only the even natural numbers, up to and including
n? (For convenience, let’s assume n itself is even.)• In other words, we seek to evaluate

n∑
k=2even

(k)
• The trick is to note the following: any even number k can be written as 2m, foranother arbitrary integer m. Therefore, wherever I see a k I can replace it with

2m, and then sum from m = 1 to n/2.
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Re-Indexing a Sum

• Let me break that down a bit more for you.
n∑

k=2even
(k) = 2︸︷︷︸(m=1)

+ 4︸︷︷︸(m=2)
+ 6︸︷︷︸(m=3)

+ · · · + n︸︷︷︸(m= n
2 )

• So, I can write
n∑

k=2even
(k) = n

2∑
m=1

(2m) = 2 ·
n
2∑

m=1

(m) = 2 ·
n
2

(
n
2 + 1

)
2

= n

2

(n
2

+ 1
)

• A similar trick holds for odd numbers; remember that any odd number k can bewritten as (2m + 1) for some natural number m.
• Re-indexing sums is very important!!!

20



To Summarize

• So, to summarize, here are some of the important sums we’ve learned (and thesewill continue to crop up throughout PSTAT 120A!):
• n∑

k=1

(k) = n(n + 1)
2

• n∑
k=0

pk = 1 − pn+1

1 − p

• ∞∑
k=a

pk = pa

1 − p
, if |p| < 1

• ∞∑
k=0

kpk = p(1 − p)2 , if |p| < 1

• ∞∑
k=0

xk

k! = ex , for any x ∈ R
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