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Sequences



Sequences

e A sequence is a list of numbers, often indexed with a pattern.

e For example: {1,2,3,4,5} is a finite sequence (since it has only a finite number
of terms), where the k™ term is simply equal to k for k € {1,2,3,4,5}.

e Another example: {2,4,6,8,10,12,---}. Here the “---" mean this is a infinite
sequence; the k™ term is simply 2k for any k € IN.

e In general, if the k" term of a sequence is given by ax, we write the sequence as

{ac}els

or just {ax} for short.

e For instance, the first sequence above can be notated {k}3_; and the second one can
foe)
be notated {2k},



Sequences

e Here are some abstract examples of sequences:

agk bk

L ®

k e k




Sequences

e Qualitatively, we can see some things:

e As k gets large, both {ax} and {ck} seem to get arbitrarily close to some fixed
number.

e This is not the case for {bi} or {dk}. The sequence {bx} makes a beeline for oo,
whereas the sequence {dk} just keeps oscillating between two values.

e This leads us to the notion of convergence:

We say that a sequence {ax} converges to the value L if we can make ax
arbitrarily close to L. More mathematically:

(Ve > 0)AN € N)[k > N => |ax— L| < €]




Series



Partial Sums

e Consider a sequence A := {ax}72;.
e a; is a number.
e a; + ap is a number.
e a; + ap + a3 is a number.
e In general, a; + -+ + a, for any fixed n € IN is a number.

e Therefore, let us consider the sequence S prescribed by:

S:={a;, a1+a, as+ta+az -}

th

e The “pattern” of the sequence S is that S,, the n™" element of S, is the sum of the

first n elements of A:

n
Sn:a1+<--+an=:Zak
k=1

e This sequence S = {5,}52, is called the sequence of partial sums of the original
sequence ay.



Partial Sums

th

e Example: What is the n™ partial sum of the sequence {k}?°,?

e In other words, we seek a closed-form expression for 14+ 2 + --- + n, for any fixed
ne N

e Here's the trick: let S, := 14 --- + n denote the quantity we seek. Notice what
happens when we add together two copies of S:

S =1 4+ 2 4+ 3 4+ ..-4+(n=-1)+n
+ s n +n=-1)+m0-2)+---+ 2 + 1
25, =(m+1)+(n+1) +(n+1)+---+(n+1)+(n+1)

e On the LHS we have 25,. On the RHS, we have n copies of (n+ 1); in other words,

n(n+1)

2S5, =n(n+1) < §S,= 5

e Using sigma notation, we have just shown that

Zk_nn+1



Partial Sums

th

o Example: What is the n™ partial sum of the sequence {p"}i"zo, where pe R is a

fixed constant?

In other words, we seek a closed-form expression for 14 p + p? + - - - 4+ p”, for any
fixed n € IN.
o let S,:=1+4p+ p?+---+ p". Multiplying each term by p, we can see that
pSa=p+p+p+p + - +p"+p"
e let's see what happens when we subtract the second equation from the first:
- Sn =1l+4+p+p*+p*+---+p"
P-Sn =  p+pPP+pP+--+p"+p"!
Se—p:Sn =140 +0 +0+---+0—pt!

e In other words, (1 —p)-S, =1— p"*t1 which implies that
s _ 1-pmt
n 1-p

Using sigma notation, we have just shown that

& k_lfanrl
ZP - 1—p
k=0



Infinite Series

. » 0o o
Since the sequence of partial sums {S,}52; of a sequence {ax}32; is, well, a
sequence, it makes sense to talk about its convergence.

If S, converges to some value S, we write

g

(ak) =S
k=1
In other words,
(o] n
2_(a) = lim 1D a
k=1 k=1

So, to evaluate an infinite summation, we first take the sum up to some fixed
finite value n, find a closed-form expression for the resulting sum, and then let n
go to oo.



Geometric Series

o
e As an example, suppose we wish to determine whether or not E p* converges.
k=0
e We have already shown that
© n+1
k_1-p
p = 1—
k=0 P
so the question really boils down to whether or not the sequence
1— pn+1
1-p
has a limit.

e There is a result that states lim,—(p") =0 if |p| < 1; if |p| > 1 then {p"},
diverges. Hence, our infinite series converges only when |p| < 1, in which case it
evaluates to

1
" if |p| < 1
> p T, flel<

e This is a VERY important result; it is called the geometric series.



Geometric Series

5 k 5 5
e As a more concrete example, consider Y 77, (%) . Since p = (1/2) < 1, the series

(8 -

k=0 2

converges and

2

e An extension of the Geometric Series states that

a

= P
Y p=1— ilpl<1
k=a P




Taylor and MacLaurin Expansions




Taylor and MacLaurin Expansions

e There exists a very powerful theorem from Calculus, which effectively states the
following: given a “nice”! enough function f(x),

> £(n)
Fg =y DD pap (1)

n=0

for any a € R. The sum on the RHS is known as the Taylor Series Expansion (or
simply the Taylor Expansion) of f(x) about the point a.

e Setting a = 0 in equation (2) yields the so-called MacLaurin Series Expansion
(aka MacLaurin Expansion) of f(x):

© £ln)
=y T @
n=0 :

TFor our purposes, “nice” can be considered synonymous with “infinitely differentiable”



Example: Exponential Series

= eX.

Problem: Derive the MaclLaurin Expansion of f(x)

= €%, that is, f(")(x) =%, Vne IN. This

e Note that f(x) = f'(x) = f”(x) =

allows us to conclude that f ”)(0) = e0 =1, and
ST
nl” n!
n=0 n=0
e For example,

[oe] 2,-’

Z S =e? % 73891
= n



Manipulating Sums




Differentiation of Sums

e |t turns out, under certain conditions (over which we will not concern ourselves
for the purposes of this class), derivatives and infinite sums commute.

e As an example, consider the geometric series for a fixed common ratio p < 1:

) P=1

k=0
e Differentiating both sides w.r.t. p yields
o
e P e P
dp \ dp \1-p (1-p)p?

e On the LHS, we can pass the derivative through the sum to obtain
*[§0) -5 Lo
dp dp

k=0 k=1 k=1

e Note that after passing the derivative through, we started the sum from k = 1 instead of
k = 0. This is because the first term of our original sequence is p® = 1, which doesn’t
depend on p: hence, when we take the derivative of that term w.r.t. p we simply get 0.



Differentiation of Sums

e Putting the pieces together, we find

= 1
k k—1 —
2_kp (1-p)?

k=1

or, restarting the sum on the LHS from k = 0 (since [kpk_l]k=0 = 0) and
multiplying both sides by p,

- P
kak:m if |p| < 1

e Perhaps this method will be useful on one of the Worksheet Problems for this
week...



Integration of Sums

e Infinite sums can be integrated term-by-term as well!

e For example, let us again start with the geometric series assuming |p| < 1:
[o¢]
=) _#*
k=0
e Replacing p with (—p?) yields
1 _ i(_l ) p2)k _ i(_l)kp2k
1+ p?
k=0 k=0
e Integrate both sides w.r.t. p:
oo
[ (555 do= [ [Zt-ate| ap
1+ p? pars

e Once the dust settles, we have

o
kZ—O 2k + 1 p?* = arctan(p) if |p| < 1



Re-Indexing a Sum

There’s another tool I'd like to bring your attention to. I'll introduce this by way
of an example.

We already have a formula for the sum of the first n natural numbers. What if we
seek a formula for the sum of only the even natural numbers, up to and including
n? (For convenience, let's assume n itself is even.)

In other words, we seek to evaluate

n
D_(k)
k=2
even
The trick is to note the following: any even number k can be written as 2m, for

another arbitrary integer m. Therefore, wherever | see a k | can replace it with
2m, and then sum from m =1 to n/2.



Re-Indexing a Sum

e Let me break that down a bit more for you.

2 (m=1) (m=2) (m=3) (m=1)
e So, | can write
n g % n(n
_ _ 5(3+1) _n (ﬁ )
Y (k=) @m)=2-) (m) 5 = 5(3+1
k=2 m=1 m=1
even

e A similar trick holds for odd numbers; remember that any odd number k can be
written as (2m + 1) for some natural number m.

e Re-indexing sums is very important!!!

20



To Summarize

e So, to summarize, here are some of the important sums we've learned (and these
will continue to crop up throughout PSTAT 120Al):

'Z(k nn+1)

pn+1
an >
k .
-Zp :7,lf\p|<1
k=a 1=p
o> kb= P iflp <1
1-pp?
k=0
-Zk—f e, forany x e R
k=0
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