Instructions:

- Please submit your work to Gradescope by no later than the due date posted above.
- Be sure to show your work; correct answers with no supporting work will not be awarded full points.
- 2 randomly selected questions/parts will be graded, but you must still turn in your work for all problems in order to be eligible to earn full credit.

1. Let (X, Y) be a random vector with joint p.d.f. given by

$$
f_{X, Y}(x, y)= \begin{cases}c \cdot\left(\frac{y}{x}\right)^{4} & \text { if }(x, y) \in \mathcal{R} \\ 0 & \text { otherwise }\end{cases}
$$

where $c>0$ is an as-of-yet undetermined constant, and \mathcal{R} is the region in the first quadrant below the graph of $y=\min \{x, 1\}$.
(a) Find the value of c.
(b) Set up, but do not evaluate, the double integral corresponding to $\mathbb{P}(X+Y \geq 2)$.
(c) Find $f_{X}(x)$, the marginal p.d.f. of X.
(d) Find $f_{Y}(y)$, the marginal p.d.f. of Y.
(e) Find $\mathbb{E}[X]$
(f) Find $\mathbb{E}[Y]$
(g) Compute $\operatorname{Cov}(X, Y)$.
(h) Are X and Y independent? Explain.
2. Let $X_{i} \sim \operatorname{Exp}\left(\lambda_{i}\right)$ for $i=1, \cdots, n$; further suppose that the X_{i} 's are independnt. Define

$$
Y:=\min _{1 \leq i \leq n}\left\{X_{i}\right\}
$$

in other words, Y is the smallest of the $X_{i}{ }^{\prime}$ s. Identify the distribution of Y by name; be sure to include any/all relevant parameter(s)!
3. Let (X, Y) be a random vector with joint p.m.f. given by

$$
p_{X, Y}(x, y)= \begin{cases}(y-1)\left(\frac{1}{2}\right)^{x+y} & \text { if } x \in\{1,2, \cdots\}, y \in\{2,3, \cdots\} \\ 0 & \text { otherwise }\end{cases}
$$

(a) Verify that $p_{X, Y}(x, y)$ is a valid joint p.m.f.
(b) Find the marginal p.m.f.'s of X and Y. Hint: You can answer this question without doing any additional summations!
(c) Use your answer to part (b) to compute $\mathbb{E}[X]$ and $\mathbb{E}[Y]$. Hint: You can answer this question without doing any additional summations!
(d) Compute $\mathbb{E}[X Y]$. Hint: You can answer this question without doing any additional summations! Just be sure to justify all of your work/steps.
4. Clara and Donna both roll a fair k-sided die, independently of each other.
a) Compute the probability that Clara rolls a number smaller than Donna.
b) Consider the probability that Clara rolls a number strictly greater than Donna. A student argues that this probability should simply be 1 minus the answer to part (a). Do you agree with this student's reasoning? Explain why or why not.

