Instructions:

- Please submit your work to Gradescope by no later than the due date posted above.
- Be sure to show your work; correct answers with no supporting work will not be awarded full points.
- 2 randomly selected questions/parts will be graded, but you must still turn in your work for all problems in order to be eligible to earn full credit.

1. Let (X, Y) be a random vector with joint p.d.f. given by

$$
f_{X, Y}(x, y)= \begin{cases}c \cdot\left(\frac{y}{x}\right)^{4} & \text { if }(x, y) \in \mathcal{R} \\ 0 & \text { otherwise }\end{cases}
$$

where $c>0$ is an as-of-yet undetermined constant, and \mathcal{R} is the region in the first quadrant below the graph of $y=\min \{x, 1\}$.
(a) Find the value of c.

Solution: It will be useful to first sketch the support:

From this picture, we see that integrating in the order $\mathrm{d} x \mathrm{~d} y$ will be simplest:

$$
\begin{aligned}
\iint_{\mathcal{R}}\left(\frac{y}{x}\right)^{4} \mathrm{~d} A & =\int_{0}^{1} \int_{y}^{\infty} \frac{y^{4}}{x^{4}} \mathrm{~d} x \mathrm{~d} y \\
& =\int_{0}^{1} y^{4}\left[-\frac{1}{3 x^{3}}\right]_{x=y}^{x=\infty} \mathrm{d} y \\
& =\frac{1}{3} \int_{0}^{1} y^{4} \cdot \frac{1}{y^{3}} \mathrm{~d} y=\frac{1}{3} \int_{0}^{1} y \mathrm{~d} y=\frac{1}{6} \Longrightarrow c=6
\end{aligned}
$$

(b) Set up, but do not evaluate, the double integral corresponding to $\mathbb{P}(X+Y \geq 2)$.

Solution: We first sketch the region of integration:

Once again, the order $\mathrm{d} x \mathrm{~d} y$ will be easiest: hence

$$
\mathbb{P}(X+Y \geq 2)=\int_{0}^{1} \int_{2-y}^{\infty} 6 \cdot \frac{y^{4}}{x^{4}} \mathrm{~d} x \mathrm{~d} y
$$

(c) Find $f_{X}(x)$, the marginal p.d.f. of X.

Solution: To find the marginal p.d.f. of X, we integrate out y. In order to do so, however, we must consider two cases:

- If $x \in[0,1]$ then

$$
f_{X}(x)=\int_{0}^{x} 6 \cdot \frac{y^{4}}{x^{4}} \mathrm{~d} y=\frac{6}{x^{4}} \int_{0}^{x} y^{4} \mathrm{~d} x=\frac{6}{5} \cdot \frac{1}{x^{4}} \cdot x^{5}=\frac{6}{5} x
$$

- If $x \in[1, \infty]$ then

$$
f_{X}(x)=\int_{0}^{1} 6 \cdot \frac{y^{4}}{x^{4}} \mathrm{~d} y=\frac{6}{x^{4}} \int_{0}^{1} y^{4} \mathrm{~d} x=\frac{6}{5 x^{4}}
$$

So, putting everything together,

$$
f_{X}(x)= \begin{cases}\frac{6}{5} x & \text { if } x \in[0,1] \\ \frac{6}{5 x^{4}} & \text { if } x \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

One can verify that this integrates to unity, as epxected.
(d) Find $f_{Y}(y)$, the marginal p.d.f. of Y.

Solution: For $f_{Y}(y)$, we do not need to split into cases: for $y \in[0,1]$ we have

$$
f_{Y}(y)=\int_{y}^{\infty} 6 \cdot \frac{y^{4}}{x^{4}} \mathrm{~d} x=6 y^{4} \cdot\left[-\frac{1}{3 x^{3}}\right]_{x=y}^{x=\infty}=2 y^{4} \cdot \frac{1}{y^{3}}=2 y
$$

That is,

$$
f_{Y}(y)= \begin{cases}2 y & \text { if } y \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

(e) Find $\mathbb{E}[X]$

Solution: We could use $f_{X}(x)$ to compute the necessary integral, but I shall go ahead and apply the multidimensional version of the LOTUS to compute $\mathbb{E}[X]$ using a double integral:

$$
\mathbb{E}[X]=\int_{0}^{1} \int_{y}^{\infty} x \cdot 6 \cdot \frac{y^{4}}{x^{4}} \mathrm{~d} x \mathrm{~d} y
$$

$$
\begin{aligned}
& =6 \int_{0}^{1} \frac{y^{4}}{x^{3}} \mathrm{~d} x \mathrm{~d} y \\
& =6 \int_{0}^{1} y^{4} \cdot\left[-\frac{1}{2 x^{2}}\right]_{x=y}^{x=\infty} \mathrm{d} y \\
& =3 \int_{0}^{1} y^{4} \cdot \frac{1}{y^{2}} \mathrm{~d} y=3 \int_{0}^{1} y^{2} \mathrm{~d} y=1
\end{aligned}
$$

One can verify that this is indeed the same answer we would get if we had computed $\mathbb{E}[X]$ using $\int_{-\infty}^{\infty} x f_{X}(x) \mathrm{d} x$ instead.
(f) Find $\mathbb{E}[Y]$

Solution: We could again apply the LOTUS, but in this case it will be simpler to just use $f_{Y}(y)$:

$$
\mathbb{E}[Y]=\int_{0}^{1} 2 y^{2} \mathrm{~d} y=\frac{2}{3}
$$

(g) Compute $\operatorname{Cov}(X, Y)$.

Solution: Recall that $\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$. The only term we have not yet computed is $\mathbb{E}[X Y]$; to do so, we apply the multidimensional version of the LOTUS:

$$
\begin{aligned}
\mathbb{E}[X Y] & =\int_{0}^{1} \int_{y}^{\infty} x y \cdot 6 \cdot \frac{y^{4}}{x^{4}} \mathrm{~d} x \mathrm{~d} y \\
& =6 \int_{0}^{1} \frac{y^{5}}{x^{3}} \mathrm{~d} x \mathrm{~d} y \\
& =6 \int_{0}^{1} y^{5} \cdot\left[-\frac{1}{2 x^{2}}\right]_{x=y}^{x=\infty} \mathrm{d} y \\
& =3 \int_{0}^{1} y^{5} \cdot \frac{1}{y^{2}} \mathrm{~d} y=3 \int_{0}^{1} y^{3} \mathrm{~d} y=\frac{3}{4}
\end{aligned}
$$

Therefore,

$$
\operatorname{Cov}(X, Y)=\frac{3}{4}-(1)\left(\frac{2}{3}\right)=\frac{1}{12}
$$

(h) Are X and Y independent? Explain.

Solution: There are several explanations for why X and Y are not independent. The first is to use the definition of independence; clearly $f_{X}(x) \cdot f_{Y}(y) \neq f_{X, Y}(x, y)$. Alternatively, we could have argued that if they were independent then they would be uncorrelated; since we have a nonzero correlation, we can conclude that we fail to have independence.
2. Let $X_{i} \sim \operatorname{Exp}\left(\lambda_{i}\right)$ for $i=1, \cdots, n$; further suppose that the X_{i} 's are independnt. Define

$$
Y:=\min _{1 \leq i \leq n}\left\{X_{i}\right\}
$$

in other words, Y is the smallest of the $X_{i}{ }^{\prime}$ s. Identify the distribution of Y by name; be sure to include any/all relevant parameter(s)!

Solution: Let's examine the survival function (i.e. one-minus-the-cdf) of Y :

$$
\overline{F_{Y}}(y):=\mathbb{P}(Y \geq y)=\mathbb{P}\left(\min _{1 \leq i \leq n}\left\{X_{i}\right\} \geq y\right)
$$

Now, note the following: if the smallest of n numbers is larger than y, then all n of those numbers must be larger than y. In other words,

$$
\{Y \geq y\}=\bigcap_{i=1}^{n}\left\{X_{i} \geq y\right\}
$$

and so

$$
\overline{F_{Y}}(y)=\mathbb{P}\left(\bigcap_{i=1}^{n}\left\{X_{i} \geq y\right\}\right)
$$

Since the X_{i} 's are independent by assumption, we further have

$$
\overline{F_{Y}}(y)=\mathbb{P}\left(\bigcap_{i=1}^{n}\left\{X_{i} \geq y\right\}\right)=\prod_{i=1}^{n} \mathbb{P}\left(X_{i} \geq y\right)=\prod_{i=1}^{n}\left(e^{-\lambda_{i} y}\right)=\exp \left\{-y \sum_{i=1}^{n} \lambda_{i}\right\}
$$

To make things even more explicit, we can take the negative-derivative and see that

$$
f_{Y}(y)=\left(\sum_{i=1}^{n} \lambda_{i}\right) e^{-\left(\sum_{i=1}^{n} \lambda_{i}\right) y}
$$

meaning

$$
Y \sim \operatorname{Exp}\left(\sum_{i=1}^{n} \lambda_{i}\right)
$$

3. Let (X, Y) be a random vector with joint p.m.f. given by

$$
p_{X, Y}(x, y)= \begin{cases}(y-1)\left(\frac{1}{2}\right)^{x+y} & \text { if } x \in\{1,2, \cdots\}, y \in\{2,3, \cdots\} \\ 0 & \text { otherwise }\end{cases}
$$

(a) Verify that $p_{X, Y}(x, y)$ is a valid joint p.m.f.

Solution: Nonnegativity is relatively trivial; $(1 / 2)^{x+y}$ will be nonnegative whenever $x \geq 1$ and $y \geq 2$, and the same is true of $(y-1)$. Thus, all that remains is to check that the p.m.f. sums to unity:

$$
\begin{aligned}
\sum_{x} \sum_{y} p_{X, Y}(x, y) & =\sum_{x=1}^{\infty} \sum_{y=2}^{\infty}(y-1)\left(\frac{1}{2}\right)^{x+y} \\
& =\left[\sum_{x=1}^{\infty}\left(\frac{1}{2}\right)^{x}\right] \cdot\left[\sum_{y=2}^{\infty}(y-1)\left(\frac{1}{2}\right)^{y}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1 / 2}{1-1 / 2} \times \sum_{n=1}^{\infty} n\left(\frac{1}{2}\right)^{n+1} \\
& =1 \times \frac{1}{2} \sum_{n=0}^{\infty} n\left(\frac{1}{2}\right)^{n} \\
& =\frac{1}{2} \cdot \frac{1 / 2}{(1-1 / 2)^{2}}=\frac{1 / 4}{1 / 4}=1
\end{aligned}
$$

Therefore, $p_{X, Y}(x, y)$ is a valid p.m.f..
(b) Find the marginal p.m.f.'s of X and Y. Hint: You can answer this question without doing any additional summations!

Solution: We could find the marginal p.m.f.'s using summation. However, note that we can factorize the joint:

$$
\begin{aligned}
(y-1)\left(\frac{1}{2}\right)^{x+y} & =\left(\frac{1}{2}\right)^{x} \times(y-1)\left(\frac{1}{2}\right)^{y} \\
& =\left(\frac{1}{2}\right)^{x-1}\left(\frac{1}{2}\right) \times\binom{ y-1}{2-1}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{y-2}
\end{aligned}
$$

This allows us to immediately note that $X \perp Y$; furthermore, we recognize the x - and y-terms above, which allows us to conclude $X \sim \operatorname{Geom}(1 / 2)$ and $Y \sim \operatorname{NegBin}(2,1 / 2)$.
(c) Use your answer to part (b) to compute $\mathbb{E}[X]$ and $\mathbb{E}[Y]$. Hint: You can answer this question without doing any additional summations!

Solution: Since $X \sim \operatorname{Geom}(1 / 2)$ we have

$$
\mathbb{E}[X]=\frac{1}{1 / 2}=2
$$

Similarly, since $Y \sim \operatorname{NegBin}(2,1 / 2)$ we have

$$
\mathbb{E}[Y]=\frac{2}{1 / 2}=4
$$

(d) Compute $\mathbb{E}[X Y]$. Hint: You can answer this question without doing any additional summations! Just be sure to justify all of your work/steps.

Solution: In part (b), we saw that $X \perp Y$ which means $\operatorname{Cov}(X, Y)=0$, and consequently $\mathbb{E}[X Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]=2 \cdot 4=8$
4. Clara and Donna both roll a fair k-sided die, independently of each other.
a) Compute the probability that Clara rolls a number smaller than Donna.

Solution: Let C denote the value of Clara's roll and D denote the value of Donna's roll. Then,

$$
C, D \stackrel{\text { i.i.d. }}{\sim} \operatorname{Unif}\{1,2, \ldots, k\}
$$

We seek $\mathbb{P}(C<D)$. Note that we can decompose the event $\{C<D\}$ in the following way:

$$
\{C<D\}=\bigcup_{j=1}^{k}[\{C=j\} \cap\{D>j\}]
$$

Since C and D are independent, and since all events in the union are disjoint, taking the probability of both sides of the above equation yields

$$
\mathbb{P}(C<D)=\sum_{j=1}^{k} \mathbb{P}(C=j) \cdot \mathbb{P}(D>j)
$$

From the information provided about the distribution of C and D, we find

$$
\begin{aligned}
& \mathbb{P}(C=j)=\frac{1}{k} \\
& \mathbb{P}(D>j)=1-\mathbb{P}(D \leq j)=1-\frac{j}{k}
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
\mathbb{P}(C<D) & =\sum_{j=1}^{k} \mathbb{P}(C=j) \cdot \mathbb{P}(D>j) \\
& =\sum_{j=1}^{k} \frac{1}{k} \cdot\left(1-\frac{j}{k}\right) \\
& =\frac{1}{k}\left[k-\frac{1}{k} \cdot \frac{k(k+1)}{2}\right] \\
& =1-\frac{k+1}{2 k}=1-\frac{1}{2}-\frac{1}{2 k}=\frac{1}{2}-\frac{1}{2 k}
\end{aligned}
$$

b) Consider the probability that Clara rolls a number strictly greater than Donna. A student argues that this probability should simply be 1 minus the answer to part (a). Do you agree with this student's reasoning? Explain why or why not.

Solution: The student's logic is flawed. This is because $\{C<D\}^{C}=\{C \geq D\}$; the student has neglected to take into account the fact that Clara and Donna could plausibly roll the same number.

