Instructions:

- Please submit your work to Gradescope by no later than the due date posted above.
- Be sure to show your work; correct answers with no supporting work will not be awarded full points.
- 2 randomly selected questions/parts will be graded, but you must still turn in your work for all problems in order to be eligible to earn full credit.

1. A few lectures ago, we encountered the χ^{2} distribution. In this problem, we shall investigate this distribution further.
(a) If $T \sim \chi^{2}$, write down $f_{T}(t)$, the p.d.f. of T. (Yes, we did prove this in lecture! You don't need to re-derive the result; just write it down.)
(b) Identify the χ^{2} distribution as a special case of one of our familiar distributions.
(c) Suppose $T_{i} \stackrel{\text { i.i.d. }}{\sim} \chi^{2}$ for $i=1, \cdots, n$. Identify the distribution of $W:=\sum_{i=1}^{n} X_{i}$. Hint: One of the results from Discussion Worksheet 7 might be useful here. By the Way: The distribution of W is called the χ^{2} distribution with n degrees of freedom, and is notated $W \sim \chi_{n}^{2}$.
(d) Now, suppose $X_{i} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(\mu, \sigma^{2}\right)$ for $i=1, \cdots, n$. Define

$$
S:=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2}
$$

Compute $\mathbb{E}[S]$ and $\operatorname{Var}(S)$.
2. Recall the notion of runs, discussed in lecture: a run, in the context of tossing a $p-\operatorname{coin} n$ times, refers to a string of consecutive heads or tails. For instance, in the outcome
H H H T T H T H T T
there are 6 runs:

$$
\text { H H H } \mid \text { TT| } H|T| H \mid T T
$$

Let X denote the number of runs in n tosses of a $p-$ coin. We will also make the simplifying assumption that n is even.
(a) What is the state space of X ?
(b) Compute $\mathbb{P}(X=1)$.
(c) Compute $\mathbb{P}(X=n)$.

It turns out that the PMF doesn't have a nice simple expression. Nonetheless, we can actually find a relatively simple expression for $\mathbb{P}(X=2)$, which is what we will work toward in the next few parts.
(d) Suppose the first toss lands heads. Compute the probability of exactly 2 runs in this case.
(e) Now, suppose the first toss lands tails. Compute the probability of exactly 2 runs in this case.
(f) Combine your two cases above to conclude

$$
\mathbb{P}(X=2)=2 \cdot \frac{p^{n} q-p q^{n}}{p-q}
$$

3. Given a collection of random variables $\left\{X_{i}\right\}_{i=1}^{n}$, we define the sample mean to be

$$
\bar{X}_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

For the purposes of this problem, we will assume that the X_{i}^{\prime} s are i.i.d. with common mean μ and common variance σ^{2}; i.e. $\mathbb{E}\left[X_{i}\right]=\mu, \operatorname{Var}\left(X_{i}\right)=\sigma^{2}$ for all $i=1, \cdots, n$, and the X_{i} 's are all independent.
(a) Compute $\mathbb{E}\left[\bar{X}_{n}\right]$ as a function of μ and n.
(b) Compute $\operatorname{Var}\left(\bar{X}_{n}\right)$ as a function of σ^{2} and n.
(c) If $X_{i} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(\mu, \sigma^{2}\right)$, what is the distribution of \bar{X}_{n} ? Confirm that your answers to parts (a) and (b) are consistent with your answer to this part.
(d) If $X_{i} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Gamma}(r, \lambda)$, what is the distribution of \bar{X}_{n} ? Confirm that your answers to parts (a) and (b) are consistent with your answer to this part.
4. The following parts are unrelated.
(a) Let X be a continuous random variable with MGF given by

$$
M_{X}(t)= \begin{cases}(1-t)^{-3 / 2} & \text { if } t<1 \\ \infty & \text { otherwise }\end{cases}
$$

Find $\mathbb{E}[X]$ and $\operatorname{Var}(X)$. DO NOT simply recognize the distribution of X; this part is designed to give you practice with differentiation!
(b) Let X be a discrete random variable with MGF (Moment-Generating Function) given by

$$
M_{X}(t)=\left(0.3+0.7 e^{2 t}\right)^{8}
$$

Find $p_{X}(k)$, the probability mass function (p.m.f.) of X.

