Instructions:

- Please submit your work to Gradescope by no later than the due date posted above.
- Be sure to show your work; correct answers with no supporting work will not be awarded full points.
- 2 randomly selected questions/parts will be graded, but you must still turn in your work for all problems in order to be eligible to earn full credit.

1. A few lectures ago, we encountered the χ^{2} distribution. In this problem, we shall investigate this distribution further.
(a) If $T \sim \chi^{2}$, write down $f_{T}(t)$, the p.d.f. of T. (Yes, we did prove this in lecture! You don't need to re-derive the result; just write it down.)

Solution: From the lecture on Transformations,

$$
f_{T}(t)=\frac{1}{y \sqrt{2 \pi}} e^{-\frac{1}{2} y} \cdot \mathbb{1}_{\{y \geq 0\}}
$$

(b) Identify the χ^{2} distribution as a special case of one of our familiar distributions.

Solution: We need only to focus on the variable part of the p.d.f: note that

$$
\frac{1}{\sqrt{y}} e^{-\frac{1}{2} y}=y^{-1 / 2} e^{-\frac{1}{2} y}=y^{1 / 2-1} e^{-1 / 2}
$$

which allows us to recognize $Y \sim \operatorname{Gamma}(1 / 2,1 / 2)$. By the way, we didn't explicitly show this but

$$
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}
$$

meaning we can write the full density as

$$
f_{Y}(y)=\frac{1}{\sqrt{\pi}} \cdot \frac{1}{\sqrt{2}} \cdot y^{1 / 2-1} e^{-\frac{1}{2} y} \cdot \mathbb{1}_{\{y \geq 0\}}=\frac{\left(\frac{1}{2}\right)^{1 / 2}}{\Gamma(1 / 2)} \cdot y^{1 / 2-1} \cdot e^{-\frac{1}{2} y} \cdot \mathbb{1}_{\{y \geq 0\}}
$$

further solidifying our believes that $Y \sim \operatorname{Gamma}(1 / 2,1 / 2)$.
(c) Suppose $T_{i} \stackrel{\text { i.i.d. }}{\sim} \chi^{2}$ for $i=1, \cdots, n$. Identify the distribution of $W:=\sum_{i=1}^{n} T_{i}$. Hint: One of the results from Discussion Worksheet 7 might be useful here. By the Way: The distribution of W is called the χ^{2} distribution with n degrees of freedom, and is notated $W \sim \chi_{n}^{2}$.

Solution: By Problem 1(a) on Worksheet 07, we know that the sum of independent Gamma random variables with the same rate parameter is also distributed as a Gamma random variable: i.e. if $X \sim \operatorname{Gamma}(r, \lambda)$ and $Y \sim \operatorname{Gamma}(s, \lambda)$ with $X \perp Y$ then $(X+Y) \sim \operatorname{Gamma}(r+$ $s, \lambda)$. In fact, this generalizes:

$$
X_{i} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Gamma}\left(r_{i}, \lambda\right) \Longrightarrow\left(\sum_{i=1}^{n} X_{i}\right) \sim \operatorname{Gamma}\left(\sum_{i=1}^{n} r_{i}, \lambda\right)
$$

Therefore, since $T_{i} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Gamma}(1 / 2,1 / 2)$ by part (b), we have

$$
W:=\sum_{i=1}^{n} T_{i} \sim \operatorname{Gamma}\left(\sum_{i=1}^{n} \frac{1}{2}, \frac{1}{2}\right) \sim \operatorname{Gamma}\left(\frac{n}{2}, \frac{1}{2}\right)
$$

(d) Now, suppose $X_{i} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(\mu, \sigma^{2}\right)$ for $i=1, \cdots, n$. Define

$$
S:=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2}
$$

Compute $\mathbb{E}[S]$ and $\operatorname{Var}(S)$.
Solution: Recall that

$$
\left(\frac{X_{i}-\mu}{\sigma}\right) \sim \mathcal{N}(0,1)
$$

[this is just our familiar Standardization result for the normal distribution]. Therefore,

$$
\left(\frac{X_{i}-\mu}{\sigma}\right)^{2} \sim \chi^{2}
$$

by the result we proved in the Transformations lecture. Therefore,

$$
\left[\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2}\right] \sim \chi^{n} \sim \operatorname{Gamma}\left(\frac{n}{2}, \frac{1}{2}\right)
$$

by part (c) above. Additionally, we have seen [on Problem 1(b) of Worksheet 5] that if $U \sim$ $\operatorname{Gamma}(r, \lambda)$ then $(c U) \sim \operatorname{Gamma}(r, \lambda / c)$ for any positive constant c. Therefore,

$$
S:=\left(\frac{1}{n}\right) \cdot \sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2} \sim \operatorname{Gamma}\left(\frac{n}{2}, \frac{\left(\frac{1}{2}\right)}{\left(\frac{1}{n}\right)}\right) \sim \operatorname{Gamma}\left(\frac{n}{2}, \frac{n}{2}\right)
$$

Since we know that $U \sim \operatorname{Gamma}(r, \lambda) \Longrightarrow \mathbb{E}[U]=r / \lambda$ and $\operatorname{Var}(U)=r /\left(\lambda^{2}\right)$, we have

$$
\mathbb{E}[S]=\frac{\left(\frac{n}{2}\right)}{\left(\frac{n}{2}\right)}=1 ; \quad \operatorname{Var}(S)=\frac{\left(\frac{n}{2}\right)}{\left(\frac{n}{2}\right)^{2}}=\frac{2}{n}
$$

2. Recall the notion of runs, discussed in lecture: a run, in the context of tossing a $p-\operatorname{coin} n$ times, refers to a string of consecutive heads or tails. For instance, in the outcome
H H H T THTHTT
there are 6 runs:

$$
H H H|T T| H|T| H \mid T T
$$

Let X denote the number of runs in n tosses of a p-coin. We will also make the simplifying assumption that n is even.
(a) What is the state space of X ?

Solution: As was mentioned in lecture, the smallest value X can take is 1 . Analogously, the largest value X can take is n (alternating heads/tails), meaning

$$
S_{X}=\{1,2, \cdots, n\}
$$

(b) Compute $\mathbb{P}(X=1)$.

Solution: The event $\{X=1\}$ corresponds to either all heads or all tails. Thus,

$$
\mathbb{P}(X=1)=p^{n}+q^{n}
$$

(c) Compute $\mathbb{P}(X=n)$.

Solution: If the first toss landed heads, then the event $\{X=n\}$ corresponds to the sequence

$$
\text { HTHTHT } \cdots \text { HT }
$$

which has probability $p^{\frac{n}{2}} q^{\frac{n}{2}}$ of occurring. Similarly, if the first toss landed tails, then the event $\{X=n\}$ corresponds to the sequence

$$
\text { ТНТНТН } \cdots T H
$$

which also has probability $p^{\frac{n}{2}} q^{\frac{n}{2}}$. Therefore,

$$
\mathbb{P}(X=n)=2 p^{\frac{n}{2}} q^{\frac{n}{2}}
$$

It turns out that the PMF doesn't have a nice simple expression. Nonetheless, we can actually find a relatively simple expression for $\mathbb{P}(X=2)$, which is what we will work toward in the next few parts.
(d) Suppose the first toss lands heads. Compute the probability of exactly 2 runs in this case.

Solution: Let's list out a few of the possible outcomes:

$$
\begin{gathered}
H H \cdots H H T \\
H H \cdots H T T \\
H H \cdots T T T \\
\vdots \\
H T \cdots T T T
\end{gathered}
$$

Adding up the probabilities of these outcomes yields

$$
\begin{aligned}
\text { answer } & =p^{n-1} q+p^{n-2} q^{2}+\cdots+p q^{n-1} \\
& =\sum_{j=1}^{n-1} p^{n-j} q^{j}=p^{n} \sum_{j=1}^{n-1}\left(\frac{q}{p}\right)^{j} \\
& =p^{n} \times \frac{\left(\frac{q}{p}\right)-\left(\frac{q}{p}\right)^{n}}{1-\left(\frac{q}{p}\right)}=\frac{q p^{n-1}-q^{n}}{1-\left(\frac{q}{p}\right)}=\frac{p^{n} q-p q^{n}}{p-q}
\end{aligned}
$$

(e) Now, suppose the first toss lands tails. Compute the probability of exactly 2 runs in this case.

Solution: Let's list out a few of the possible outcomes:

$$
\begin{gathered}
T T \cdots T T H \\
T T \cdots T H H \\
T T \cdots H H H \\
\vdots \\
T H \cdots H H H
\end{gathered}
$$

Adding up the probabilities of these outcomes yields

$$
\begin{aligned}
\text { answer } & =q^{n-1} p+q^{n-2} p^{2}+\cdots+q p^{n-1} \\
& =\sum_{j=1}^{n-1} q^{n-j} p^{j}=q^{n} \sum_{j=1}^{n-1}\left(\frac{p}{q}\right)^{j} \\
& =q^{n} \times \frac{\left(\frac{p}{q}\right)-\left(\frac{p}{q}\right)^{n}}{1-\left(\frac{p}{q}\right)}=\frac{p q^{n-1}-p^{n}}{1-\left(\frac{p}{q}\right)}=\frac{p q^{n}-p^{n} q}{q-p}
\end{aligned}
$$

(f) Combine your two cases above to conclude

$$
\mathbb{P}(X=2)=2 \cdot \frac{p^{n} q-p q^{n}}{p-q}
$$

Solution: We need only to add our answers from parts (d) and (e) together:

$$
\begin{aligned}
\mathbb{P}(X=2) & =\frac{p^{n} q-p q^{n}}{p-q}+\frac{p q^{n}-p^{n} q}{q-p} \\
& =\frac{p^{n} q-p q^{n}}{p-q}-\frac{p q^{n}-p^{n} q}{p-q} \\
& =\frac{p^{n} q-p q^{n}-p q^{n}+p^{n} q}{p-q}=\frac{2 p^{n} q-2 p q^{n}}{p-q}=2 \cdot \frac{p^{n} q-p q^{n}}{p-q}
\end{aligned}
$$

3. Given a collection of random variables $\left\{X_{i}\right\}_{i=1}^{n}$, we define the sample mean to be

$$
\bar{X}_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

For the purposes of this problem, we will assume that the $X_{i}{ }^{\prime}$ s are i.i.d. with common mean μ and common variance σ^{2}; i.e. $\mathbb{E}\left[X_{i}\right]=\mu, \operatorname{Var}\left(X_{i}\right)=\sigma^{2}$ for all $i=1, \cdots, n$, and the X_{i} 's are all independent.
(a) Compute $\mathbb{E}\left[\bar{X}_{n}\right]$ as a function of μ and n.

Solution: By the Linearity of Expectation,

$$
\mathbb{E}\left[\bar{X}_{n}\right]=\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} \mu=\frac{1}{\not n}(\not h \mu)=\mu
$$

(b) Compute $\operatorname{Var}\left(\bar{X}_{n}\right)$ as a function of σ^{2} and n.

Solution: We have

$$
\operatorname{Var}\left(\bar{X}_{n}\right)=\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \sigma=\frac{1}{n^{2}} \cdot\left(n \sigma^{2}\right)=\frac{\sigma^{2}}{n}
$$

where we have utilized the independence of the X_{i}^{\prime} s to interchange the summation and the variance operator.
(c) If $X i \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(\mu, \sigma^{2}\right)$, what is the distribution of \bar{X}_{n} ? Confirm that your answers to parts (a) and (b) are consistent with your answer to this part.

Solution: We know that the sum of i.i.d. normally distributed random variables is also normally distributed. Hence,

$$
\bar{X}_{n} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

(d) If $X_{i} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Gamma}(r, \lambda)$, what is the distribution of \bar{X}_{n} ? Confirm that your answers to parts (a) and (b) are consistent with your answer to this part.

Solution: We have

$$
\begin{aligned}
\left(\sum_{i=1}^{n} X_{i}\right) & \sim \operatorname{Gamma}(n r, \lambda) \\
\Longrightarrow \frac{1}{n}\left(\sum_{i=1}^{n} X_{i}\right) & \sim \operatorname{Gamma}(n r, n \lambda)
\end{aligned}
$$

To check consistency with parts (a) and (b),

$$
\begin{aligned}
\mathbb{E}\left[\bar{X}_{n}\right] & =\frac{n r}{n \lambda}=\frac{r}{\lambda}=\mathbb{E}\left[X_{i}\right] \\
\operatorname{Var}\left(\bar{X}_{n}\right) & =\frac{n r}{(n \lambda)^{2}}=\frac{r}{n \lambda^{2}}=\frac{\left(\frac{r}{\lambda^{2}}\right)}{n}=\frac{\operatorname{Var}\left(X_{i}\right)}{n}
\end{aligned}
$$

4. The following parts are unrelated.
(a) Let X be a continuous random variable with MGF given by

$$
M_{X}(t)= \begin{cases}(1-t)^{-3 / 2} & \text { if } t<1 \\ \infty & \text { otherwise }\end{cases}
$$

Find $\mathbb{E}[X]$ and $\operatorname{Var}(X)$. DO NOT simply recognize the distribution of X; this part is designed to give you practice with differentiation!

Solution: We fix a $t<1$ and then differentiate the MGF:

$$
\begin{aligned}
M_{X}^{\prime}(t) & =\frac{3}{2}(1-t)^{-5 / 2} \\
\Longrightarrow \mathbb{E}[X] & =M_{X}^{\prime}(0)=\frac{3}{2} \\
M_{X}^{\prime \prime}(t) & =\frac{3}{2} \cdot \frac{5}{2} \cdot(1-t)^{-7 / 2} \\
\Longrightarrow \mathbb{E}\left[X^{2}\right] & =M_{X}^{\prime \prime}(0)=\frac{3}{2} \cdot \frac{5}{2}=\frac{15}{4} \\
\Longrightarrow \operatorname{Var}(X) & =\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}=\frac{15}{4}-\left(\frac{3}{2}\right)^{2}=\frac{6}{4}=\frac{3}{2}
\end{aligned}
$$

(b) Let X be a discrete random variable with MGF (Moment-Generating Function) given by

$$
M_{X}(t)=\left(0.3+0.7 e^{2 t}\right)^{8}
$$

Find $p_{X}(k)$, the probability mass function (p.m.f.) of X.
Solution: First note: If $Y \sim \operatorname{Bin}(n, p)$ then

$$
M_{Y}(t)=\left(1-p+p e^{t}\right)^{n} \quad \forall t \in \mathbb{R}
$$

Therefore, if $Y \sim \operatorname{Bin}(8,0.7)$ we have

$$
M_{Y}(t)=\left(0.3+0.7 e^{t}\right)^{8} \quad \forall t \in \mathbb{R}
$$

Now, this is very close to the MGF of X, but not quite. Now, we also know that in general

$$
M_{a Y+b}(t)=e^{b t} M_{X}(a t)
$$

So, if $X=2 Y$ then

$$
M_{X}(t)=M_{2 Y}(t)=M_{Y}(2 t)=\left(0.3+0.7 e^{2 t}\right)^{8} \quad \forall t \in \mathbb{R}
$$

which is the MGF of X ! Therefore, we take $Y \sim \operatorname{Bin}(8,0.7)$ so that $X=2 Y$ and

$$
p_{X}(k)=\mathbb{P}(X=k)=\mathbb{P}(2 Y=k)=\mathbb{P}(Y=k / 2)=\binom{8}{k / 2}(0.7)^{k / 2}(0.3)^{8-k / 2} \cdot \mathbb{1}_{\{k \in\{0,2,4,6, \cdots, 16\}\}}
$$

