
10: Linear Combinations of Random VariablesPSTAT 120A: Summer 2022
Ethan P. MarzbanJuly 18, 2022
University of California, Santa Barbara



Where We’ve Been

• Axioms of Probability, Probability Spaces, Counting• Conditional Probabilities, independence, etc.• Basics of Random Variables (classification, p.m.f., c.m.f., moments)• Discrete Distributions• Continuous Distributions• Transformations of Random Variables• Double Integrals• Random Vectors and the basics of multivariate probability• Independence of random variables, and covariance/correlation
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Some more on Indicators

Theorem

Given a probability space (Ω, F,P) and two events A,B ∈ F , then 1A · 1B =
1A∩B

• Here’s the general idea: both 1A and 1B are always either 0 or 1. Therefore,their product will also be 0 or 1.• The product 1A · 1B will be 1 only when both 1A and 1B are 1; i.e. when both Aand B occur. Otherwise, at least one of 1A and 1B will be zero. Hence,
1A · 1B = 1A∩B .
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Sums of Random Variables



Leadup: Poisson Processes

• Let’s return to our Poisson Process for a moment.
N[0,t]

time
t

× × ×

T1 T2
T3

T0,2

T0,3• Recall that Ti denotes the time between the (i − 1)th and i th arrivals, andfollows the Exp(λ) distribution.• Additionally, T0,2 represents the time until the 2nd arrival, and follows theGamma(2, λ) distribution.• Now, if T1 denotes the time until the first arrival, T2 denotes the time betweenthe first and second arrivals, and T0,2 denotes the time until the second arrival,then it would appear
T0,2 = T1 + T2• So, in some way, the “sum of two independent exponential distributions isdistributed as Gamma...” This leads us into our next topic: sums of randomvariables.

Sums of Random Variables Using Indicators to Compute Expectations4



Leadup

• Suppose we have two random variables X and Y that have a joint p.d.f. given by
fX ,Y (x , y ).• Now, consider the random variable Z := X + Y .• First, note that Z is in fact a random variable. That is because both X and Ymap from Ω to R, meaning their sum will also map from ΩtoR.• Now, we know the mean and variance of Z :

E[Z ] = E[X + Y ] = E[X ] +E[Y ]Var(Z ) = = Var(X + Y ) = Var(X ) + Var(Y ) + 2Cov(X ,Y )
• Though that is all well and good, what if we are interested in the p.d.f. of Z?
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Leadup

• So far, we really only have one tool to help us find the p.d.f. of a transformation ofrandom variable(s): the CDF method!• So, let’s look at the c.d.f. of Z : FZ (z) = P(X + Y ≤ z).• Very conveniently, we have already dealt with quantities like these! Specifically,we can compute them by computing a double integral of the joint fX ,Y (x , y ) overthe region R = {(x , y ) : x + y ≤ z} for a fixed z .

x

y

z

z
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Leadup

x

y

z

z

• So, using dy dx we see
FZ (z) = P(X + Y ≤ z) = ż ∞

−∞

ż z−x

−∞
fX ,Y (x , y ) dy dx

• Differentiating w.r.t z , and utilizing the Fundamental Theorem of Calculus, we find
fZ (z) = ddz FZ (z) = ddz

[
ż ∞

−∞

ż z−x

−∞
fX ,Y (x , y ) dy dx]

= ż ∞

−∞

(
∂
∂z

ż z−x

−∞
fX ,Y (x , y ) dy) dx

= ż ∞

−∞
fX ,Y (x , z − x) dx
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Leadup

x

y

z

z

• If we had instead used dx dy we would have found
FZ (z) = P(X + Y ≤ z) = ż ∞

−∞

ż z−y

−∞
fX ,Y (x , y ) dx dy

• Differentiating w.r.t z , and utilizing the Fundamental Theorem of Calculus, we find
fZ (z) = ddz FZ (z) = ddz

[
ż ∞

−∞

ż z−y

−∞
fX ,Y (x , y ) dx dy]

= ż ∞

−∞

(
∂
∂z

ż z−y

−∞
fX ,Y (x , y ) dx) dy

= ż ∞

−∞
fX ,Y (z − y , y ) dy
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P.D.F. of a Sum

• Thus, putting our work together, we have proven the following result:
Theorem

Given a pair of bivariate random variables (X ,Y ) with joint p.d.f. fX ,Y (x , y ), thep.d.f. of Z := X + Y is given by
fZ (z) = ż ∞

−∞
fX ,Y (x , z − x) dx (1)

= ż ∞

−∞
fX ,Y (z − y , y ) dy (2)

• Of course, often times the joint p.d.f. will be 0 over a significant portion of ourregion of integration. As such, often times the limits of our integrals will actuallyinvolve z . (We’ll do an example in a bit.)
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P.D.F. of a Sum

• An interesting simplification arises when X ⊥ Y . If X ⊥ Y , then
fX ,Y (x , y ) = fX (x)fY (y ) and the previous theorem becomes

fZ (z) = ż ∞

−∞
fX (x) · fY (z − x) dx

= ż ∞

−∞
fX (z − y ) · fY (y ) dy

• Those of you with a bit of a math background might recognize this as the
convolution of fX and fY ! That is,

X ⊥ Y =⇒ fX+Y = (fX ∗ fY )
and for this reason we sometimes refer to the previous theorem as the
convolution formula.• As an aside: the convolution operator appears frequently through mathematics,especially in the context of functional analysis. Those of you who have taken aDifferential Equations class might also recognize the convolution from there as well (inthe context of Laplace Transformations!)

Sums of Random Variables Using Indicators to Compute Expectations10



Example

Suppose X ,Y i.i.d.∼ Exp(λ). Identify the distribution of Z := X + Y , taking care to listout any/all relevant parameter(s)!
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Discrete Convolution

• We have a similar result for discrete random variables:
Theorem: Discrete Convolution

Given a pair of bivariate random variables (X ,Y ) with joint p.m.f. pX ,Y (x , y ),the p.m.f. of Z := X + Y is given by
pZ (z) = ∞∑

x=−∞
pX ,Y (x , z − x) (3)

= ∞∑
y=−∞

pX ,Y (z − y , y ) (4)
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Example

Suppose X ,Y i.i.d.∼ Geom(p). Identify the distribution of Z := X + Y , taking care to listout any/all relevant parameter(s)!
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Comments

• The hardest part of these convolution problems is often finding the limits ofintegration/summation.• I advise finding these limits by either drawing a picture, or appealing toindicators (like we did in the examples we did before).• Additionally, I encourage you to keep the derivation of the convolution formula inmind as I find that to be quite helpful in determining the limits of integration!Let’s see what I mean by way of an example:
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Example

Let X ,Y i.i.d.∼ Unif[0, 1], and define Z := X + Y . Find fZ (z), the p.d.f. of Z . (As an aside:the distribution of Z is a special case of what is known as the triangular distribution.)
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Using Indicators to Compute
Expectations



Leadup

• Remember how we originally computed the expected value of the Binomialdistribution? We used the definition of expectation E[X ] = ∑k kpX (k) and thenevaluated the sum.• It wasn’t terrible... You might ask, though, “is there another way to compute themean of a Binomial distribution?”• The answer is...

Figure 1: Source: https://knowyourmeme.com/memes/there-is-another
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Example

• Here’s the general idea. Let X ∼ Bin(n, p). We know then that X measures thenumber of successes in n Bernoulli(p) trials.• Let’s define n indicators in the following way:
1i := {1 if the i th trial resulted in a success

0 otherwise
for i = 1, · · · , n.• Note that

X = n∑
i=1

1i

• Don’t believe me? Well, consider n = 2. Then X := ∑2
i=1 1i ∈ {0, 1, 2}, where:• X is 0 when both indicators are zero; i.e. when both trials 1 and 2 resulted in a failure,which occurs with probability (1 − p)2;• X is 1 when exactly one of the indicators is zero; i.e. when either trial 1 or trial 2 butnot both resulted in a success, which occurs with probability 2p(1 − p);• X is 2 when both indicators are 1; i.e. when both trials 1 and 2 resulted in a success,which occurs with probability p2 .
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Example

• Now, this is useful because we know that expectations are linear. That is,
E[X ] = E[ n∑

i=1

Xi

] = n∑
i=1

E[1i ]
• In general, we have the following fact:

Theorem

Given a probability space (Ω, F,P), and event A ∈ F and an indicator
1A, then E[1A] = P(A).

• Therefore, in our Binomial Problem,
E[1i ] = P(the i th trial resulted in a success) = p

• So,
E[X ] = n∑

i=1

E[1i ] = n∑
i=1

(p) = np
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Example

• Let’s take this a step further! I claim we can get the variance of the binomialdistribution quite simply using our indicator representation of X ! Observe that:
Var(X ) = Var( n∑

i=1

1i

)
• Now, since our trials are independent (by assumption), the indicators are allindependent as well. This allows us to effectively pass the variance through thesum: Var(X ) = Var( n∑

i=1

1i

) = n∑
i=1

Var(1i )
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Example

• Let’s take a bit of a detour.• Given a probability space (Ω, F,P), and event A ∈ F , and an indicator 1A, notethat
12A = 1A · 1A = ({1 if A

0 otherwise
)

·
({

1 if A
0 otherwise

)

= {1 if A and A

0 otherwise = {1 if A
0 otherwise = 1A

• Therefore, 12A = 1A and
Var(1A) = E[12A] − (E[1A])2 = E[1A] − (E[1A])2 = P(A) −P(A)2 = P(A) ·P(A∁)

• Let’s make this a theorem:
Theorem

Given a probability space (Ω, F,P), and event A ∈ F and an indicator
1A, then Var(1A) = P(A) ·P(A∁).
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Example

• So, going back to our Binomial problem,
Var(1i ) = P(success on i th trial) ·P(failure on i th trial) = p(1 − p)

• Therefore, Var(X ) = n∑
i=1

Var(1i ) = n∑
i=1

p(1 − p) = np(1 − p)
• Quite a bit slicker than what we did before, don’t you think?
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Runs

• Let’s use our newfound knowledge of indicators to tackle an interesting (yet fairlyinvolved) concept.• Suppose we toss a p−coin n times. One possible outcome is:
H H H T T H T H T T

• Note that there are some interesting patterns present in this outcome:specifically, notice that there are certain “chunks” or “blocks” of consecutiveheads and tails:
H H H T T H T H T T

• This leads us to the notion of runs. A run is a string of consecutive heads (ortails); note that a run could be of length 1.• An interesting question then arises: what can we say about the number of runs ina sequence of n coin tosses?• As an example: in our sample outcome above, we observed 6 runs.
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Runs

• Again, suppose we toss a p−coin n times. For notational convenience, it will beuseful to set q := 1 − p to be the probability of the coin landing “tails.”• Let X denote the number of runs in these n tosses.
• Question 1: What is E[X ]?• The key is to express X as a sum of suitably defined indicator random variables.• To see how we can do this, let’s examine the notion of runs a bit more closely.Specifically, what does it mean to say that the j th toss (where j ∈ {1, 2, · · · , n}) isthe start of a new run?• Well, if the j th toss marks the beginning of a new run, clearly the result of the j thtoss must be different than the toss right before it!• To that end, we define

1j := {1 if the j th and (j − 1)th tosses were different
0 otherwise
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Runs

• For convenience, here is the definition of 1j again:
1j := {1 if the j th and (j − 1)th tosses were different

0 otherwise
• Now, how can we express X as a sum of some of these 1j ’s?• First, note that it is not correct to write X = ∑n

j=1 1j . This is largely due to howwe define 11: specifically, what is the 0th toss?• Additionally, we know that X is guaranteed to be at least 1, since we areguaranteed at least one run in our n tosses (all heads, or all tails).• Therefore, we can see that the appropriate relationship between X and the 1j ’s is
X = 1 + n∑

j=2

1j (5)
• Therefore, by linearity,

E[X ] = 1 + n∑
j=2

E[1j ]
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Runs

• What is E[1j ]? Recall that E[1A] = P(A) for any event A. Therefore,
E[1j ] = P(the j th and (j − 1)th tosses were different)= P((j − 1)th toss was heads, j th toss was tails)+P((j − 1)th toss was tails, j th toss was heads)= pq + qp = 2pq

• Therefore,
E[X ] = 1 + n∑

j=2

E[1j ]
= 1 + n∑

j=2

2pq = 1 + 2(n − 1)pq
• Where did the (n − 1) come from? Note that there are (n − 2 + 1) = (n − 1) terms in thesum!• As an interesting extension: if the coin were fair, then

E[X ] = 1 + 2(n − 1) · 1
2

· 1
2

= 1 + n − 1

2
= n + 1

2
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Runs

• Question 1.5: What value of p maximizes the number of runs?• For notational convenience, set
f (p) := E[X ] = 1 + 2(n − 1)p(1 − p)

• We now differentiate, and set equal to zero:
ddp f (p) = ddp [1 + 2(n − 1)p(1 − p)] = 1 − 2p

=⇒ 1 − 2p̂ = 0 =⇒ p̂ = 1

2
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Runs

• Question 2: What is the PMF of X?• Quite difficult, in general!• On the homework, you will investigate some of the simpler aspects of this question.
• Question 3: What is Var(X )?• Again, a bit challenging- and, again, you’ll work on this for homework!
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