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Where We've Been

e Axioms of Probability, Probability Spaces, Counting

e Conditional Probabilities, independence, etc.

e Basics of Random Variables (classification, p.m.f, c.m.f, moments)
e Discrete Distributions

e Continuous Distributions

e Transformations of Random Variables

e Double Integrals

e Random Vectors and the basics of multivariate probability

e Independence of random variables, and covariance/correlation
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Some more on Indicators

Given a probability space (Q, F,P) and two events A, B € F, then 14 -1p =
Lans

e Here's the general idea: both 14 and 1p are always either 0 or 1. Therefore,
their product will also be 0 or 1.

e The product 14 - 1g will be 1 only when both 14 and 1g are 1; i.e. when both A
and B occur. Otherwise, at least one of 14 and 15 will be zero. Hence,
1a-1p=1ans.
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Sums of Random Variables



Leadup:

Poisson Processes

Let’s return to our Poisson Process for a moment.

T3 Ny,

| | > time

To2

To3

th and it arrivals, and

Recall that T; denotes the time between the (i — 1)
follows the Exp(A) distribution.
Additionally, To2 represents the time until the 2" arrival, and follows the
Gamma(2, A) distribution.
Now, if T1 denotes the time until the first arrival, T> denotes the time between
the first and second arrivals, and Tp> denotes the time until the second arrival,
then it would appear

To,2 =T1+ T
So, in some way, the “sum of two independent exponential distributions is
distributed as Gamma...” This leads us into our next topic: sums of random

variables.
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Leadup

e Suppose we have two random variables X and Y that have a joint p.d.f. given by
Xy (x.y).
e Now, consider the random variable Z := X + Y.

e First, note that Z is in fact a random variable. That is because both X and Y
map from Q to R, meaning their sum will also map from QtoR.

e Now, we know the mean and variance of Z:

E[Z] = E[X + Y] = E[X] + E[Y]
Var(Z) = = Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

e Though that is all well and good, what if we are interested in the p.d.f. of Z7
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Leadup

e So far, we really only have one tool to help us find the p.d.f. of a transformation of
random variable(s): the CDF method!

e So, let's look at the c.df. of Z: Fz(z) = P(X + Y < z).

e Very conveniently, we have already dealt with quantities like these! Specifically,
we can compute them by computing a double integral of the joint fx y(x,y) over
the region R = {(x,y) : x + y < z} for a fixed z.

N
N .
N
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Leadup

N
N
N

e So, using dy dx we see

Fele) =P+ Y <2 = [ [ vy dy dx

e Differentiating w.r.t z, and utilizing the Fundamental Theorem of Calculus, we find

o) = el = o | [ [ vt ay ox]

= fj:o (% fim fx,y(x,y) cly) dx

= J fx y(x,z—x) dx

—0o0
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z\

e If we had instead used dx dy we would have found

0 rz—y
Fele) =P+ Y <2 = [ [ vy dxdy
—00 J—o0

e Differentiating w.r.t z, and utilizing the Fundamental Theorem of Calculus, we find

f(2) = L Fy() = dilz Ujo LH Fevix.y) dx cly]

dz

A e x| d
_f,oo(gj,m va(x,y)cx) dy

:J fxy(z—y,y)dy

—0oQ
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P.D.F. of a Sum

e Thus, putting our work together, we have proven the following result:

Theorem

Given a pair of bivariate random variables (X, Y) with joint p.d.f. fx y(x, y), the
p.df of Z:= X+ Y is given by

fz(z) = J-_oo fx,y(x,z — x) dx (1)
= f_oo fxy(z—y.y) dy )

e Of course, often times the joint p.d.f. will be 0 over a significant portion of our
region of integration. As such, often times the limits of our integrals will actually

involve z. (We'll do an example in a bit.)
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P.D.F. of a Sum

e An interesting simplification arises when X L Y. If X L Y, then
fx, y(x,y) = fx(x)fy(y) and the previous theorem becomes

fz(z) = jw fx(x) - fy(z — x) dx

= jm fx(z—y) fyly) dy

e Those of you with a bit of a math background might recognize this as the
convolution of fx and fy! That is,

X1lY = fX+y:(fx*fy)

and for this reason we sometimes refer to the previous theorem as the
convolution formula.

e As an aside: the convolution operator appears frequently through mathematics,
especially in the context of functional analysis. Those of you who have taken a
Differential Equations class might also recognize the convolution from there as well (in
the context of Laplace Transformations!)
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Example

tid.

Suppose X, Y <~ Exp(A). Identify the distribution of Z := X + Y, taking care to list
out any/all relevant parameter(s)!
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Discrete Convolution

e We have a similar result for discrete random variables:

Theorem: Discrete Convolution

Given a pair of bivariate random variables (X, Y) with joint p.m.f. px y(x,y),
the p.m.f. of Z:= X + Y is given by

pz(z)= )  px,y(x,z—x) 3)
=) pxy(z—yy) (4)
y=—0

Sums of Random Variables Using Indicators to Compute Expectations



Example

Suppose X, Y = Geom(p). Identify the distribution of Z := X + Y, taking care to list
out any/all relevant parameter(s)!
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Comments

e The hardest part of these convolution problems is often finding the limits of
integration/summation.

e | advise finding these limits by either drawing a picture, or appealing to
indicators (like we did in the examples we did before).

e Additionally, | encourage you to keep the derivation of the convolution formula in
mind as | find that to be quite helpful in determining the limits of integration!
Let’s see what | mean by way of an example:
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Example

Let X, Y ' Unif[0, 1], and define Z := X + Y. Find fz(z), the p.d.f. of Z. (As an aside:
the distribution of Z is a special case of what is known as the triangular distribution.)
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Using Indicators to Compute
Expectations




Leadup

e Remember how we originally computed the expected value of the Binomial
distribution? We used the definition of expectation E[X]| = Y, kpx(k) and then

evaluated the sum.

It wasn’t terrible... You might ask, though, “is there another way to compute the
mean of a Binomial distribution?”

e The answer is...

THERE IS ANOTHER

Figure 1: Source: https://knowyourmeme.com/memes/there-is-another
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Example

e Here's the general idea. Let X ~ Bin(n, p). We know then that X measures the

number of successes in n Bernoulli(p) trials.

e Let's define n indicators in the following way:

1 if the i™" trial resulted in a success
1;:=
0 otherwise

fori=1,---,n.

e Note that

e Don't believe me? Well, consider n = 2. Then X := Z%:l 1; € {0,1,2}, where:
e X is 0 when both indicators are zero; i.e. when both trials 1 and 2 resulted in a failure,
which occurs with probability (1 — p)?;
e X is 1 when exactly one of the indicators is zero; i.e. when either trial 1 or trial 2 but
not both resulted in a success, which occurs with probability 2p(1 — p);
e X is 2 when both indicators are 1; i.e. when both trials 1 and 2 resulted in a success,

which occurs with probability p?.
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Example

e Now, this is useful because we know that expectations are linear. That is,

Y Xi|=>_ E1]
i=1 i=1

e In general, we have the following fact:

EX]=E

Given a probability space (Q, F,IP), and event A € F and an indicator
14, then E[14] = P(A).

e Therefore, in our Binomial Problem,
E[1;] = P(the i trial resulted in a success) = p

e So,

EX]=) Eli]=) (p)= np
i=1 i=1
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Example

o Let's take this a step further! | claim we can get the variance of the binomial
distribution quite simply using our indicator representation of X! Observe that:

Var(X) = Var | Y 1;
i=1

e Now, since our trials are independent (by assumption), the indicators are all
independent as well. This allows us to effectively pass the variance through the

sum:

Var(X) =Var | Y _1;| =) Var(1;)
i=1 i=1
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Example

e Let's take a bit of a detour.

e Given a probability space (Q, F,P), and event A € F, and an indicator 14, note

that
5 1 ifA 1 ifA
13 =14-1a= -
0 otherwise 0 otherwise

1 ifAand A 1 ifA a0
= = =14
0 otherwise 0 otherwise

e Therefore, Ili =14 and
Var(La) = E[13] - (E[1a])? = E[La] — (E[14)? = P(A) — P(A? = P(A) - P(A°)

e Let's make this a theorem:

Given a probability space (Q, F,IP), and event A € F and an indicator
14, then Var(14) = P(A) - P(AC).
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Example

e So, going back to our Binomial problem,
Var(1;) = IP(success on fith trial) - P(failure on fit trial) = p(1 — p)
e Therefore,

Var(X) =} Var(lj)=) p(1-p)= np(l-p)
i=1 i=1

e Quite a bit slicker than what we did before, don’t you think?
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Runs

Let's use our newfound knowledge of indicators to tackle an interesting (yet fairly
involved) concept.

Suppose we toss a p—coin n times. One possible outcome is:
HHHTTHTHTT

Note that there are some interesting patterns present in this outcome:
specifically, notice that there are certain “chunks” or “blocks” of consecutive

[+ H AT TIHAHT 7]

This leads us to the notion of runs. A run is a string of consecutive heads (or

heads and tails:

tails); note that a run could be of length 1.

An interesting question then arises: what can we say about the number of runs in
a sequence of n coin tosses?

e As an example: in our sample outcome above, we observed 6 runs.
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Runs

e Again, suppose we toss a p—coin n times. For notational convenience, it will be
useful to set g := 1 — p to be the probability of the coin landing “tails.”

e Let X denote the number of runs in these n tosses.

e Question 1: What is E[X]?
e The key is to express X as a sum of suitably defined indicator random variables.

e To see how we can do this, let's examine the notion of runs a bit more closely.
Specifically, what does it mean to say that the j" toss (where j € {1,2,---,n}) is
the start of a new run?

e Well, if the j toss marks the beginning of a new run, clearly the result of the jt
toss must be different than the toss right before it!

e To that end, we define

. 1 if the /™ and (j — 1)™ tosses were different
j = :
0 otherwise
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Runs

For convenience, here is the definition of 1; again:

1 if the /™ and (j — 1)™ tosses were different

1;:=
0 otherwise
Now, how can we express X as a sum of some of these 1;'s?

First, note that it is not correct to write X = Zj"=1 1;. This is largely due to how
we define 11: specifically, what is the 0" toss?

Additionally, we know that X is guaranteed to be at least 1, since we are
guaranteed at least one run in our n tosses (all heads, or all tails).

Therefore, we can see that the appropriate relationship between X and the 1;'s is
n
X=1+) 1; (5)
j=2

Therefore, by linearity,

EX]=1+ imj]
j=2
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Runs

e What is E[1;]? Recall that E[1 4] = P(A) for any event A. Therefore,
E[1;] = P(the " and G- 1)th tosses were different)
=P(j— 1)th toss was heads, jM toss was tails)
+ P((j — 1)th toss was tails, j™ toss was heads)
= pq+qp =2pq
e Therefore,

E[X]=1+ Z E[1;]
j=2

n
:1+Z2pq: 1+2(n—1)pg
j=2

e Where did the (n — 1) come from? Note that there are (n — 2+ 1) = (n — 1) terms in the
sum!

e As an interesting extension: if the coin were fair, then

11 -1 1
E[X]=1+2(n—1)-§.§=1+n2 ="J2f
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e Question 1.5: What value of p maximizes the number of runs?

e For notational convenience, set
f(p) = E[X] = 1+ 2(n— 1)p(1 - p)
e We now differentiate, and set equal to zero:

d d

3 1P = gyl +20—Vp—pll=1-2p
R .1
= 1-2p=0 = p=3
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Runs

e Question 2: What is the PMF of X?

e Quite difficult, in general!

e On the homework, you will investigate some of the simpler aspects of this question.

e Question 3: What is Var(X)?

e Again, a bit challenging- and, again, you’ll work on this for homework!

Sums of Random Variables Using Indicators to Compute Expectations



	Sums of Random Variables
	Using Indicators to Compute Expectations

