10: Linear Combinations of Random Variables PSTAT 120A: Summer 2022

Ethan P. Marzban

July 18, 2022

University of California, Santa Barbara

Where We've Been

- Axioms of Probability, Probability Spaces, Counting
- Conditional Probabilities, independence, etc.
- Basics of Random Variables (classification, p.m.f., c.m.f., moments)
- Discrete Distributions
- Continuous Distributions
- Transformations of Random Variables
- Double Integrals
- Random Vectors and the basics of multivariate probability
- Independence of random variables, and covariance/correlation

Some more on Indicators

Theorem

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and two events $A, B \in \mathcal{F}$, then $\mathbb{1}_{A} \cdot \mathbb{1}_{B}=$ $\mathbb{1}_{\text {A }}$ B

- Here's the general idea: both $\mathbb{1}_{A}$ and $\mathbb{1}_{B}$ are always either 0 or 1 . Therefore, their product will also be 0 or 1 .
- The product $\mathbb{1}_{A} \cdot \mathbb{1}_{B}$ will be 1 only when both $\mathbb{1}_{A}$ and $\mathbb{1}_{B}$ are 1 ; i.e. when both A and B occur. Otherwise, at least one of $\mathbb{1}_{A}$ and $\mathbb{1}_{B}$ will be zero. Hence, $\mathbb{1}_{A} \cdot \mathbb{1}_{B}=\mathbb{1}_{A \cap B}$.

Sums of Random Variables

Leadup: Poisson Processes

- Let's return to our Poisson Process for a moment.

- Recall that T_{i} denotes the time between the $(i-1)^{\text {th }}$ and $i^{\text {th }}$ arrivals, and follows the $\operatorname{Exp}(\lambda)$ distribution.
- Additionally, $T_{0,2}$ represents the time until the $2^{\text {nd }}$ arrival, and follows the Gamma $(2, \lambda)$ distribution.
- Now, if T_{1} denotes the time until the first arrival, T_{2} denotes the time between the first and second arrivals, and $T_{0,2}$ denotes the time until the second arrival, then it would appear

$$
T_{0,2}=T_{1}+T_{2}
$$

- So, in some way, the "sum of two independent exponential distributions is distributed as Gamma..." This leads us into our next topic: sums of random variables.

Leadup

- Suppose we have two random variables X and Y that have a joint p.d.f. given by $f_{X, Y}(x, y)$.
- Now, consider the random variable $Z:=X+Y$.
- First, note that Z is in fact a random variable. That is because both X and Y map from Ω to \mathbb{R}, meaning their sum will also map from Ω to \mathbb{R}.
- Now, we know the mean and variance of Z :

$$
\begin{aligned}
\mathbb{E}[Z] & =\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y] \\
\operatorname{Var}(Z) & ==\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
\end{aligned}
$$

- Though that is all well and good, what if we are interested in the p.d.f. of Z ?

Leadup

- So far, we really only have one tool to help us find the p.d.f. of a transformation of random variable(s): the CDF method!
- So, let's look at the c.d.f. of $Z: F_{Z}(z)=\mathbb{P}(X+Y \leq z)$.
- Very conveniently, we have already dealt with quantities like these! Specifically, we can compute them by computing a double integral of the joint $f_{X, Y}(x, y)$ over the region $\mathcal{R}=\{(x, y): x+y \leq z\}$ for a fixed z.

Leadup

- So, using dy $\mathrm{d} x$ we see

$$
F_{Z}(z)=\mathbb{P}(X+Y \leq z)=\int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_{X, Y}(x, y) d y d x
$$

- Differentiating w.r.t z, and utilizing the Fundamental Theorem of Calculus, we find

$$
\begin{aligned}
f_{Z}(z) & =\frac{\mathrm{d}}{\mathrm{~d} z} F_{Z}(z)=\frac{\mathrm{d}}{\mathrm{~d} z}\left[\int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x\right] \\
& =\int_{-\infty}^{\infty}\left(\frac{\partial}{\partial z} \int_{-\infty}^{z-x} f_{X, Y}(x, y) \mathrm{d} y\right) \mathrm{d} x \\
& =\int_{-\infty}^{\infty} f_{X, Y}(x, z-x) \mathrm{d} x
\end{aligned}
$$

Leadup

- If we had instead used $d x$ dy we would have found

$$
F_{Z}(z)=\mathbb{P}(X+Y \leq z)=\int_{-\infty}^{\infty} \int_{-\infty}^{z-y} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y
$$

- Differentiating w.r.t z, and utilizing the Fundamental Theorem of Calculus, we find

$$
\begin{aligned}
f_{Z}(z) & =\frac{\mathrm{d}}{\mathrm{~d} z} F_{Z}(z)=\frac{\mathrm{d}}{\mathrm{~d} z}\left[\int_{-\infty}^{\infty} \int_{-\infty}^{z-y} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y\right] \\
& =\int_{-\infty}^{\infty}\left(\frac{\partial}{\partial z} \int_{-\infty}^{z-y} f_{X, Y}(x, y) \mathrm{d} x\right) \mathrm{d} y \\
& =\int_{-\infty}^{\infty} f_{X, Y}(z-y, y) \mathrm{d} y
\end{aligned}
$$

P.D.F. of a Sum

- Thus, putting our work together, we have proven the following result:

Theorem

Given a pair of bivariate random variables (X, Y) with joint p.d.f. $f_{X, Y}(x, y)$, the p.d.f. of $Z:=X+Y$ is given by

$$
\begin{align*}
f_{Z}(z) & =\int_{-\infty}^{\infty} f_{X, Y}(x, z-x) d x \tag{1}\\
& =\int_{-\infty}^{\infty} f_{X, Y}(z-y, y) d y \tag{2}
\end{align*}
$$

- Of course, often times the joint p.d.f. will be 0 over a significant portion of our region of integration. As such, often times the limits of our integrals will actually involve z. (We'll do an example in a bit.)

P.D.F. of a Sum

- An interesting simplification arises when $X \perp Y$. If $X \perp Y$, then $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$ and the previous theorem becomes

$$
\begin{aligned}
f_{Z}(z) & =\int_{-\infty}^{\infty} f_{X}(x) \cdot f_{Y}(z-x) d x \\
& =\int_{-\infty}^{\infty} f_{X}(z-y) \cdot f_{Y}(y) d y
\end{aligned}
$$

- Those of you with a bit of a math background might recognize this as the convolution of f_{X} and f_{Y} ! That is,

$$
X \perp Y \Longrightarrow f_{X+Y}=\left(f_{X} * f_{Y}\right)
$$

and for this reason we sometimes refer to the previous theorem as the convolution formula.

- As an aside: the convolution operator appears frequently through mathematics, especially in the context of functional analysis. Those of you who have taken a Differential Equations class might also recognize the convolution from there as well (in the context of Laplace Transformations!)

Example

[^0]
Discrete Convolution

- We have a similar result for discrete random variables:

Theorem: Discrete Convolution

Given a pair of bivariate random variables (X, Y) with joint p.m.f. $p_{X, Y}(x, y)$, the p.m.f. of $Z:=X+Y$ is given by

$$
\begin{align*}
p_{Z}(z) & =\sum_{x=-\infty}^{\infty} p_{X, Y}(x, z-x) \tag{3}\\
& =\sum_{y=-\infty}^{\infty} p_{X, Y}(z-y, y) \tag{4}
\end{align*}
$$

Example

Suppose $X, Y \stackrel{\text { i.i.d. }}{\sim}$ Geom (p). Identify the distribution of $Z:=X+Y$, taking care to list
out any/all relevant parameter(s)!

Comments

- The hardest part of these convolution problems is often finding the limits of integration/summation.
- I advise finding these limits by either drawing a picture, or appealing to indicators (like we did in the examples we did before).
- Additionally, I encourage you to keep the derivation of the convolution formula in mind as I find that to be quite helpful in determining the limits of integration! Let's see what I mean by way of an example:

Example

Let $X, Y \stackrel{\text { i.i.d. }}{\sim}$ Unif $[0,1]$, and define $Z:=X+Y$. Find $f_{Z}(z)$, the p.d.f. of Z. (As an aside: the distribution of Z is a special case of what is known as the triangular distribution.)

Using Indicators to Compute

Expectations

Leadup

- Remember how we originally computed the expected value of the Binomial distribution? We used the definition of expectation $\mathbb{E}[X]=\sum_{k} k p_{X}(k)$ and then evaluated the sum.
- It wasn't terrible... You might ask, though, "is there another way to compute the mean of a Binomial distribution?"
- The answer is...

Figure 1: Source: https://knowyourmeme.com/memes/there-is-another

Example

- Here's the general idea. Let $X \sim \operatorname{Bin}(n, p)$. We know then that X measures the number of successes in $n \operatorname{Bernoulli}(p)$ trials.
- Let's define n indicators in the following way:

$$
\mathbb{1}_{i}:= \begin{cases}1 & \text { if the } i^{\text {th }} \text { trial resulted in a success } \\ 0 & \text { otherwise }\end{cases}
$$

for $i=1, \cdots, n$.

- Note that

$$
X=\sum_{i=1}^{n} \mathbb{1}_{i}
$$

- Don't believe me? Well, consider $n=2$. Then $X:=\sum_{i=1}^{2} \mathbb{1}_{i} \in\{0,1,2\}$, where:
- X is 0 when both indicators are zero; i.e. when both trials 1 and 2 resulted in a failure, which occurs with probability $(1-p)^{2}$;
- X is 1 when exactly one of the indicators is zero; i.e. when either trial 1 or trial 2 but not both resulted in a success, which occurs with probability $2 p(1-p)$;
- X is 2 when both indicators are 1 ; i.e. when both trials 1 and 2 resulted in a success, which occurs with probability p^{2}.

Example

- Now, this is useful because we know that expectations are linear. That is,

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[\mathbb{1}_{i}\right]
$$

- In general, we have the following fact:

Theorem

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and event $A \in \mathcal{F}$ and an indicator $\mathbb{1}_{A}$, then $\mathbb{E}\left[\mathbb{1}_{A}\right]=\mathbb{P}(A)$.

- Therefore, in our Binomial Problem,

$$
\mathbb{E}\left[\mathbb{1}_{i}\right]=\mathbb{P}\left(\text { the } i^{\text {th }} \text { trial resulted in a success }\right)=p
$$

- So,

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[\mathbb{1}_{i}\right]=\sum_{i=1}^{n}(p)=n p
$$

Example

- Let's take this a step further! I claim we can get the variance of the binomial distribution quite simply using our indicator representation of X ! Observe that:

$$
\operatorname{Var}(X)=\operatorname{Var}\left(\sum_{i=1}^{n} \mathbb{1}_{i}\right)
$$

- Now, since our trials are independent (by assumption), the indicators are all independent as well. This allows us to effectively pass the variance through the sum:

$$
\operatorname{Var}(X)=\operatorname{Var}\left(\sum_{i=1}^{n} \mathbb{1}_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(\mathbb{1}_{i}\right)
$$

Example

- Let's take a bit of a detour.
- Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and event $A \in \mathcal{F}$, and an indicator $\mathbb{1}_{A}$, note that

$$
\begin{aligned}
\mathbb{1}_{A}^{2} & =\mathbb{1}_{A} \cdot \mathbb{1}_{A}=\left(\{ \begin{array} { l l }
{ 1 } & { \text { if } A } \\
{ 0 } & { \text { otherwise } }
\end{array}) \cdot \left(\left\{\begin{array}{ll}
1 & \text { if } A \\
0 & \text { otherwise }
\end{array}\right)\right.\right. \\
& =\left\{\begin{array}{ll}
1 & \text { if } A \text { and } A \\
0 & \text { otherwise }
\end{array}=\left\{\begin{array}{ll}
1 & \text { if } A \\
0 & \text { otherwise }
\end{array}=\mathbb{1}_{A}\right.\right.
\end{aligned}
$$

- Therefore, $\mathbb{1}_{A}^{2}=\mathbb{1}_{A}$ and

$$
\operatorname{Var}\left(\mathbb{1}_{A}\right)=\mathbb{E}\left[\mathbb{1}_{A}^{2}\right]-\left(\mathbb{E}\left[\mathbb{1}_{A}\right]\right)^{2}=\mathbb{E}\left[\mathbb{1}_{A}\right]-\left(\mathbb{E}\left[\mathbb{1}_{A}\right]\right)^{2}=\mathbb{P}(A)-\mathbb{P}(A)^{2}=\mathbb{P}(A) \cdot \mathbb{P}\left(A^{\complement}\right)
$$

- Let's make this a theorem:

Theorem

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and event $A \in \mathcal{F}$ and an indicator $\mathbb{1}_{A}$, then $\operatorname{Var}\left(\mathbb{1}_{A}\right)=\mathbb{P}(A) \cdot \mathbb{P}\left(A^{\complement}\right)$.

Example

- So, going back to our Binomial problem,

$$
\operatorname{Var}\left(\mathbb{1}_{i}\right)=\mathbb{P}\left(\text { success on } i^{\text {th }} \text { trial }\right) \cdot \mathbb{P}\left(\text { failure on } i^{\text {th }} \text { trial }\right)=p(1-p)
$$

- Therefore,

$$
\operatorname{Var}(X)=\sum_{i=1}^{n} \operatorname{Var}\left(\mathbb{1}_{i}\right)=\sum_{i=1}^{n} p(1-p)=n p(1-p)
$$

- Quite a bit slicker than what we did before, don't you think?
- Let's use our newfound knowledge of indicators to tackle an interesting (yet fairly involved) concept.
- Suppose we toss a p-coin n times. One possible outcome is:
HHHTTHTHTT
- Note that there are some interesting patterns present in this outcome: specifically, notice that there are certain "chunks" or "blocks" of consecutive heads and tails:
H H HTTHTHTT
- This leads us to the notion of runs. A run is a string of consecutive heads (or tails); note that a run could be of length 1.
- An interesting question then arises: what can we say about the number of runs in a sequence of n coin tosses?
- As an example: in our sample outcome above, we observed 6 runs.
- Again, suppose we toss a p-coin n times. For notational convenience, it will be useful to set $q:=1-p$ to be the probability of the coin landing "tails."
- Let X denote the number of runs in these n tosses.
- Question 1: What is $\mathbb{E}[X]$?
- The key is to express X as a sum of suitably defined indicator random variables.
- To see how we can do this, let's examine the notion of runs a bit more closely. Specifically, what does it mean to say that the $j^{\text {th }}$ toss (where $j \in\{1,2, \cdots, n\}$) is the start of a new run?
- Well, if the $j^{\text {th }}$ toss marks the beginning of a new run, clearly the result of the $j^{\text {th }}$ toss must be different than the toss right before it!
- To that end, we define

$$
\mathbb{1}_{j}:= \begin{cases}1 & \text { if the } j^{\text {th }} \text { and }(j-1)^{\text {th }} \text { tosses were different } \\ 0 & \text { otherwise }\end{cases}
$$

- For convenience, here is the definition of $\mathbb{1}_{j}$ again:

$$
\mathbb{1}_{j}:= \begin{cases}1 & \text { if the } j^{\text {th }} \text { and }(j-1)^{\text {th }} \text { tosses were different } \\ 0 & \text { otherwise }\end{cases}
$$

- Now, how can we express X as a sum of some of these $\mathbb{1}_{j}$'s?
- First, note that it is not correct to write $X=\sum_{j=1}^{n} \mathbb{1}_{j}$. This is largely due to how we define $\mathbb{1}_{1}$: specifically, what is the $0^{\text {th }}$ toss?
- Additionally, we know that X is guaranteed to be at least 1 , since we are guaranteed at least one run in our n tosses (all heads, or all tails).
- Therefore, we can see that the appropriate relationship between X and the $\mathbb{1}_{j}$'s is

$$
\begin{equation*}
X=1+\sum_{j=2}^{n} \mathbb{1}_{j} \tag{5}
\end{equation*}
$$

- Therefore, by linearity,

$$
\mathbb{E}[X]=1+\sum_{j=2}^{n} \mathbb{E}\left[\mathbb{1}_{j}\right]
$$

- What is $\mathbb{E}\left[\mathbb{1}_{j}\right]$? Recall that $\mathbb{E}\left[\mathbb{1}_{A}\right]=\mathbb{P}(A)$ for any event A. Therefore,

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{1}_{j}\right]= & \mathbb{P}\left(\text { the } j^{\text {th }} \text { and }(j-1)^{\text {th }} \text { tosses were different }\right) \\
= & \mathbb{P}\left((j-1)^{\text {th }} \text { toss was heads, } j^{\text {th }}\right. \text { toss was tails) } \\
& +\mathbb{P}\left((j-1)^{\text {th }} \text { toss was tails, } j^{\text {th }} \text { toss was heads }\right) \\
= & p q+q p=2 p q
\end{aligned}
$$

- Therefore,

$$
\begin{aligned}
\mathbb{E}[X] & =1+\sum_{j=2}^{n} \mathbb{E}\left[\mathbb{1}_{j}\right] \\
& =1+\sum_{j=2}^{n} 2 p q=1+2(n-1) p q
\end{aligned}
$$

- Where did the $(n-1)$ come from? Note that there are $(n-2+1)=(n-1)$ terms in the sum!
- As an interesting extension: if the coin were fair, then

$$
\mathbb{E}[X]=1+2(n-1) \cdot \frac{1}{2} \cdot \frac{1}{2}=1+\frac{n-1}{2}=\frac{n+1}{2}
$$

Runs

- Question 1.5: What value of p maximizes the number of runs?
- For notational convenience, set

$$
f(p):=\mathbb{E}[X]=1+2(n-1) p(1-p)
$$

- We now differentiate, and set equal to zero:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p} f(p) & =\frac{\mathrm{d}}{\mathrm{~d} p}[1+2(n-1) p(1-p)]=1-2 p \\
\Longrightarrow 1-2 \hat{p} & =0 \Longrightarrow \hat{p}=\frac{1}{2}
\end{aligned}
$$

- Question 2: What is the PMF of X ?
- Quite difficult, in general!
- On the homework, you will investigate some of the simpler aspects of this question.
- Question 3: What is $\operatorname{Var}(X)$?
- Again, a bit challenging- and, again, you'll work on this for homework!

[^0]: Suppose $X, Y \stackrel{\text { i.id. }}{\sim} \operatorname{Exp}(\lambda)$. Identify the distribution of $Z:=X+Y$, taking care to list out any/all relevant parameter(s)!

