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Where We’ve Been

• Axioms of Probability, Probability Spaces, Counting• Conditional Probabilities, independence, etc.• Basics of Random Variables (classification, p.m.f., c.m.f., moments)• Discrete Distributions• Continuous Distributions• Transformations of Random Variables• Double Integrals• Random Vectors and the basics of multivariate probability• Independence of random variables, and covariance/correlation• Sums of Random Variables; Indicators
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Leadup

• Suppose we have two random variables X and Y .• If E(X ) = E(Y ), can we conclude that X and Y have the same distribution(sometimes notated X
d= Y )?• No! Counterexample: X ∼ Bin(20, 0.1) and Y ∼ Pois(2).• What if, in addition to E(X ) = E(Y ), we have Var(X ) = Var(Y )?• Still No! Counterexample: X ∼ Geom(0.5) and Y ∼ Pois(2).

• So, what is enough?• Turns out, equality in all moments is enough; E(X n) = E(Y n) for every n ∈ N.• That’s a lot of moments we need to check! Wouldn’t it be nice if there is somequantity that gives us access to the moments of a distribution?
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MGF

• There is such a quantity, and it is called the Moment Generating Function.
Definition: Moment Generating Function

The Moment Generating Function of X , denoted MX (t), is defined as
MX (t) := E [eXt] (1)

• As it stands, this definition works equally well for discrete and continuousrandom variables! Now, it is true that exactly how we compute the expectationon the RHS depends on whether X is discrete or continuous; specifically,
MX (t) =


∑
k

ektpX (k) if X is discrete
ż

R

ext fX (x) dx if X is continuous
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MGF

• Why the name? Because of the following theorem:
Theorem

Given a random variable X with moment-generating function MX (t), we havethat
E[X n ] = M

(n)
X (0)

provided that MX (t) is finite in an interval containing the origin. Here, M (n)
Xdenotes the nth derivative of MX .

• I may post a proof for this in a bit, for those who are curious.• Also note the following:
MX (t) = E[etX ] = E[ ∞∑

k=0

(tX )k
k!

] = ∞∑
k=0

E[X k ]
k! · tk

This fact is used in the proof of the above theorem, but you will be using it duringsection to find a way of extracting moments without the need for differentiation.
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Example

• Suppose X ∼ Geom(p).• Then MX (t) := E(eXt )∑
k

ektP(X = k)
= ∞∑

k=1

ekt · p · (1 − p)k−1

= p

1 − p

∞∑
k=1

[(1 − p)et]k
= p

���1 − p
× ���(1 − p)et

1 − (1 − p)et = pet

1 − (1 − p)et• Of course, this is valid only if the geometric series above converges, which occurswhen (1 − p)et < 1 =⇒ t < − ln(1 − p); otherwise, the MGF is infinite. Thus,
MX (t) =

 pet

1−(1−p)et if t < − ln(1 − p)
∞ otherwise
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Example

• With this formula, we can re-derive the expectation of the Geometric Distribution.Assuming t < − ln(1 − p), we have
M ′

X (t) = pet · [1 − (1 − p)et ] − pet · [−(1 − p)et ][1 − (1 − p)et ]2
= pet(((((−p(1 − p)e2t +�����

p(1 − p)e2t[1 − (1 − p)et ]2
= pet[1 − (1 − p)et ]2

M ′
X (0) = p · e0[1 − (1 − p)e0]2 = p

p2
= 1

p
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Example

Suppose X ∼ Exp(λ).
(a) Derive an expression for MX (t), the moment-generating function (MGF) of X . Besure to specify where the MGF is finite and where it is infinite!(b) Use your answer to part (a) to derive a formula for E[X n ], where n ∈ N.
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Some Common MGF’s of Discrete Distributions

Distribution MGF at t

Bin(n, p) (1 − p + pet )n, ∀t ∈ R

Geom(p)


pet

1 − (1 − p)et if t < − ln(1 − p)
∞ otherwise

NegBin(r , p)

(

pet

1 − (1 − p)et
)r if t < − ln(1 − p)

∞ otherwise
Pois(λ) eλ(et−1), ∀t ∈ R
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Some Common MGF’s of Continuous Distributions

Distribution MGF at t

Exp(λ)


λ
λ − t

if t < λ

0 otherwise
Gamma(r , λ)


(

λ
λ − t

)r if t < λ

0 otherwise
N (µ, σ2) exp{µt + σ2

2 · t2
} ; ∀t ∈ R

Unif[a, b]


etb − eta

t(b − a) if t ̸= 0

1 if t = 0
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Equality in Distribution

• Let me go back to one of the points I made at the beginning of this lecture;namely, that MGF’s are enough to determine a distribution.• I’ll phrase this a bit more formally:
Theorem

Let X and Y be two random variables with moment-generating functions
MX (t) and MY (t), respectively. Suppose there exists a δ > 0 such that forevery t ∈ (−δ, δ) we have MX (t) = MY (t) [and that both of these valuesare finite]. Then X and Y have the same distribution.

• A slight rephrasing:
Theorem

Let X and Y be two random variables with moment-generating functions
MX (t) and MY (t), respectively. If MX (t) = MY (t) for all t , then X and Yhave the same distribution [i.e. the same pmf’s/pdf’s]
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Equality in Distribution

• So, for example, suppose X is a random variable with MGF
MX (t) = { 0.2et

1−0.8et if t < − ln(0.8)
∞ otherwise

Then, we can immediately conclude that X ∼ Geom(0.2), since the MGF iscontinuous and finite over a small interval containing the origin.
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MGF’s of Transformations

Theorem

Given a random variable X with MGF MX (t), and another random variable
Y := aX + b for constants a, b, then MY (t) = ebtMX (at).

Proof.• By the definition of MGF’s,
MY (t) := E[etY ]• Since Y = aX + b, we can substitute aX + b in place of Y in our equation above:

MY (t) = E[et(aX+b)] = E[etaX+tb ] = E[e (at)X ebt ] = ebtE[e (at)X ] = ebtMX (at)
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Example

Suppose X is a random variable with MGF given by
MX (t) = { 0.2e3t

1−0.8e3t if t < −1/3 · ln(0.8)
∞ otherwise

and say I wish to compute P(X = 3). Here is the logic:
• The MGF looks a bit like that of the Geom(0.2) distribution; as such, suppose

Y ∼ Geom(0.2). Then
MY (t) = { 0.2et

1−0.8et if t < − ln(0.8)
∞ otherwise

• Now, suppose X = 3Y . Then, by the previous theorem,
MX (t) = MY (3t){ 0.2e3t

1−0.8e3t if 3t < − ln(0.8)
∞ otherwise

which is indeed the MGF we started with.• Hence, X = 3Y where Y ∼ Geom(0.2), meaning
P(X = 3) = P(3Y = 3) = P(Y = 1) = (1 − 0.2)1−1 · (0.2) = 0.2
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MGF’s of Sums

Theorem

Given two independent random variables X and Y with MGF’s MX (t) and
MY (t), respectively, and given a new random variable Z := X + Y , we have

MZ (t) = MX (t) · MY (t)
Proof.• By the definition of MGF’s,

MZ (t) := E[etZ ]• Since Z = X + Y , we can substitute X + Y in place of Z in our equation above:
MZ (t) = E[et(X+Y )] = E[etX · etY ]

• We know that functions of independent random variables are also independent;hence, since X ⊥ Y we have etX ⊥ etY , and so
MZ (t) = E[et(X+Y )] = E[etX · etY ] = E[etX ] ·E[etY ] = MX (t) · MY (t)
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MGF’s of Sums

Theorem

Given a collection of independent random variables Xi each with MGF MXi
(t),and defining S :=∑n

i=1 Xi , we have
MS (t) = n∏

i=1

MXi
(t)
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Example

• We have previously seen that if X ,Y i.i.d.∼ Exp(λ), then (X + Y ) ∼ Gamma(2, λ).The way we proved this before was using the convolution formula.• We can re-derive this result much quicker using MGF’s. Observe:
MX+Y (t) = MX (t) · MY (t) [by independence]

= 


λ
λ − t

if t < λ

0 otherwise
 ·


λ

λ − t
if t < λ

0 otherwise
 [MGF of Exp]

=

(

λ
λ − t

)2 if t < λ

∞ otherwise [MGF of Exp]
which we recognize as the MGF of the Gamma(2, λ) distribution.• This can be generalized to derive the sum of n i.i.d. Exp(λ) distributed randomvariables, or even to derive the distribution of the sum of n independentGamma(ri , λ) distributions!
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Example/Theorem

Theorem

If X ∼ N (µX , σ2
X ) aned Y ∼ N (µY , σ2

Y ) with X ⊥ Y , then
(X + Y ) ∼ N

(
µX + µY , σ2

X + σ2
Y

)
Proof.On the Chalkboard.
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Example/Theorem

Theorem

If we have a collection of independent random variables Xi ∼ N (µi , σ2
i ), then(

n∑
i=1

aiXi

)
∼ N

(
n∑

i=1

aiµi ,
n∑

i=1

a2i σ2
i

)

Proof.Omitted.
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Inversions?

• Now, everything we have done thus far (by way of using MGF’s to identifydistributions) has required us to recognize the MGF that results.• What happens if that’s not the case?• In other words, given an MGF, is there a way to “invert” the MGF to obtain theoriginal p.m.f./p.d.f., without having to resort to lookup tables?• The answer, surprisingly, is “not really!”• There is one exception, however:
Theorem

Given a random variable X with MGF given by
MX (t) = n∑

i=1

pie
tki ; ∀t ∈ R

for constants ki and pi such that ∑n
i=1 pi = 1, then the p.m.f. of X is given by

pX (ki ) = pi for all i = 1, · · · , n.
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Example

Suppose X has MGF given by
MX (t) = 1

5
e−4t + 3

5
+ 1

5
e3.2t , ∀t ∈ R

• Note that this MGF is of the form listed in the previous theorem with n = 3 and
k1 = −4, k2 = 0, and k3 = 3.2 (note that there is a “hidden” e0t attached to the(3/5) in the MGF). This means that the state space of X is

SX = {−4, 0, 3.2}

• Additionally, the PMF values can be read off directly as the coefficientsassociated with each of the exponential terms:
k −4 0 3.2

pX (k) 1/5 3/5 1/5
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Example

• By the way: now that we have the PMF of X , we can compute E[X ] in two ways.• Using MGF’s:
M ′

X (t) = −4 · 1
5
e−4t + 3.2 · 1

5
e3.2t

E[X ] = M ′
X (0) = −4 · 1

5
e−4·0 + 3.2 · 1

5
e3.2·0 = −4 · 1

5
+ 3.2 · 1

5
= −0.16

• Using the definition of expectation:
E[X ] =∑

k

kpX (k)
= (−4) ·

(
1

5

)+ (0) ·
(
3

5

)+ (3.2) ·
(
1

5

) = −0.16
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