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Where We’ve Been

• Axioms of Probability, Probability Spaces, Counting• Conditional Probabilities, independence, etc.• Basics of Random Variables (classification, p.m.f., c.m.f., moments)• Discrete Distributions• Continuous Distributions• Transformations of Random Variables• Double Integrals• Random Vectors and the basics of multivariate probability• Independence of random variables, and covariance/correlation• Sums of Random Variables; Indicators• Moment Generating Functions
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Leadup

• Up until now, we’ve been relying heavily on our knowledge about distributions;specifically, “famous” or “known” ones (e.g. Binomial, Poisson, Normal, Gamma,etc.)• We now shift our attention to a slightly different situation: what happens whenwe have very little information about a random variable? As in, what if we don’teven know what distribution it follows?• In general, there is not a whole lot we can do in such situations.• So, let’s suppose I have a random variable X and that I do not know itsdistribution, but I do know its mean. Can I say anything about probabilitiesinvolving X?• Surprisingly... yes!
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Tail Bounds



Markov’s Inequality

Theorem: Markov’s Inequality

For a nonnegative function u of a random variable X and a constant c > 0,
P(u(X ) ≥ c) ≤ E[u(X )]

c

• When X is nonnegative, “Markov’s Inequality” is often reported as the abovetheorem with u taken to be the identity function.
Proof.On the Chalkboard (time permitting)
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Example

• As an example, suppose X is a nonnegative random variable with mean 2. Then
P(X ≥ 3) ≤ 2

3• Pretty neat, huh?• Well, suppose instead of considering P(X ≥ 3), I had considered P(X ≥ 1). Then,by Markov’s Inequality,
P(X ≥ 1) ≤ 2

1
= 2

Wait... couldn’t we have done better without even applying Markov’s?• So, this last example illustrates an important point: though Markov’s inequality isvery useful, it is very conservative. Sometimes, in fact, it is so conservative thatthe bound it provides, though correct, is entirely useless.
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Example

• By the way, can we use Markov’s Inequality to bound quantities like P(X < c)?Certainly!• Note that
P(X < c) = 1 −P(X ≥ c) =⇒ P(X ≥ c) = 1 −P(X < c)

• By Markov’s Inequality,
P(X ≥ c) ≤ E[X ]

cmeaning
1 −P(X < c) ≤ E[X ]

cor, isolating P(X < c), we find[
1 − E[X ]

c

]
≥ P(X < c)

• So, in this case, note that Markov’s Inequality provides a lower bound.
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Chebyshev’s Inequality

• Alright, suppose someone has decided to take pity on us and in addition totelling us the mean of X , they have also told us the variance.• We can now modify our bounds on probabilities, by way of:
Theorem: Chebyshev’s Inequality

Suppose X is a random variable with finite mean µ and finite variance σ2; then,for any c > 0,
P(|X − µ| ≥ c) ≤ σ2

c2
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Chebyshev’s Inequality

Theorem: Chebyshev’s Inequality

Suppose X is a random variable with finite mean µ and finite variance σ2; then,for any c > 0,
P(|X − µ| ≥ c) ≤ σ2

c2

Proof.• Note |X − µ| is a nonnegative random variable; additionally, since c > 0 we seethat
{|X − µ| ≥ c} ⇐⇒ {(X − µ)2 ≥ c2}• We can apply Markov’s Inequality:

P(|X − µ| ≥ c) = P [(X − µ)2 ≥ c2
]

≤
E

[(X − µ)2]
c2• Finally, recall that E[(X − µ)2] =: Var(X ) = σ2.
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Chebyshev’s Inequality

• By the way, note the following:
{X ≥ µ + c} ⊆ {|X − µ| ≥ c}

{X ≤ µ − c} ⊆ {|X − µ| ≥ c}

(sketch a number line if you’re not convinced!)• Therefore, Chebyshev’s Inequality also gives:
P(X ≥ µ + c) ≤ σ2

c2

P(X ≤ µ − c) ≤ σ2

c2• Also, we can manipulate Chebyshev’s Inequality to give lower bounds (I leave thisas an exercise to the reader.)
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Example

Suppose X is a random variable with mean 2 and variance 1. Then
P(|X − 2| ≥ 4) ≤ 1

42
= 1

16
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Comparing the Bounds

• Okay, so it seems we have two ways of bounding probabilities: Markov’sInequality and Chebyshev’s Inequality. Which is better?• Well, firstly, what do we mean by “better?” (Sometimes we also refer to a “good”bound as a “tight” bound.)• More concretely, suppose we are trying to bound P(X ≥ c); suppose Markov’sinequality tells us P(X ≥ c) ≤ a for some a, and Chebyshev’s tells us
P(X ≥ c) ≤ b for some b.• Clearly, the upper bound that is smaller provides more information, as iteliminates a greater number of values! Remember, at the end of the day, we’dlike to compute P(X ≥ c) exactly. So, we’d like to eliminate as much uncertaintyas possible.• So, in practice, we often use both Markov’s and Chebyshev’s inequalities, andthen report the bound that is tightest.
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Comparing the Bounds

• I would also like to say- the bounds reported by Markov’s and Chebyshev’sinequalities are just that- bounds. Both tend to be quite conservative!• As an illustration, suppose X ∼ Geom(1/2). Further suppose we wished to bound
P(X ≥ 6).• Markov’s inequality tells us

P(X ≥ 6) ≤ E[X ]
6

= 2

6
= 1

3
= 0.3

• Chebyshev’s tells us
P(X ≥ 6) = P(X ≥ 2 + 4) ≤ Var(X )

42
= 4

16
= 1

4
= 0.25

• So, in this case, Chebyshev’s gives us a tigher bound.• BUT, for this particular problem, we can actually compute P(X ≥ 6) exactly:
P(X ≥ 6) = ∞∑

k=6

(
1

2

)k = (
1

2

)5

≈ 0.03

• Notice how far off both Markov’s and Chebyshev’s were!
Tail Bounds12



Conclusion

• So, in conclusion, Markov’s and Chebyhev’s Inequalities are very useful in that therequire so few assumptions.• However, as the saying goes, “there is no free lunch-” because they operateunder so few assumptions, they tend to be wildly conservative to compensate,sometimes being so conservative as to report bounds that are totally useless (i.e.upper bounds greater than 1, or lower bounds less than 0). Additionally, even thebest bound between the two Inequalities will often be far from the true value.
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