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Where We’ve Been

• Axioms of Probability, Probability Spaces, Counting• Conditional Probabilities, independence, etc.• Basics of Random Variables (classification, p.m.f., c.m.f., moments)• Discrete Distributions• Continuous Distributions• Transformations of Random Variables• Double Integrals• Random Vectors and the basics of multivariate probability• Independence of random variables, and covariance/correlation• Sums of Random Variables; Indicators• Moment Generating Functions• Tail Bounds
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Law of Large Numbers



Convergence in Distribution

Definition: Convergence in Distribution

Consider a probability space (Ω, F,P), a sequence {Xn} of random variableswith corresponding c.d.f.’s Fn(x) := FXn (x), and another random variable X withc.d.f FX (x). We say that the sequence {Xn} converges in distribution to X ifwe have pointwise convergence of the c.d.f.’s. In other words:
Fn(x)→ FX (x) ∀x for which Fn(x) and F (x) are continuous

We denote convergence in distribution using the  symbol: i.e. Xn  X
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Degenerate Random Variables

Definition

A [discrete] random variable X is said to be degenerate if there exists a point
x ′ in its state space SX for which P(X = x ′) = 1.

• Note, in this way, that constants can be viewed as random variables, albeitdegenerate ones. As such, it makes perfect sense to say that a sequence ofrandom variables {Xn} converges in distribution to a constant.
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Convergence in Probability

Definition: Convergence in Probability

Consider a probability space (Ω, F,P), a sequence {Xn} of random variables,and another random variable X . We say that the sequence {Xn} converges in
probability to X if, for every ε > 0,

lim
n→∞

P(|Xn − X | ≥ ε) = 0

We denote convergence in distribution using the p→ symbol: i.e. Xn
p→ X

• Though we will not prove it, convergence in probability is a stronger conditionthan convergence in distribution. That is, if Xn
p→ X then Xn  X whereas theconverse is not necessarily true.
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Law of Large Numbers

Theorem: Law of Large Numbers

Given an i.i.d. sequence of random variables {Xi}∞i=1 with common mean µ andvariance σ2, then
X n

p→ µwhere X n := n−1
∑n

i=1 Xi denotes the sample mean. Phrased differently, theLLN states that, for any fixed ε > 0,
lim
n→∞

P
(
|X n − µ| ≥ ε

) = 0
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Law of Large Numbers

Proof.• First note that, by a previous homework problem, E[X n ] = µ and Var(X n) = σ2/n.• Thus, Chebyshev’s inequality tells us
P(|X n − µ| ≥ ε) ≤ Var(X n)

ε2 = σ2
nε2• Additionally, probabilities are definitionally nonnegative meaning we have

0 ≤ P(|X n − µ| ≥ ε) ≤ σ2
nε2• Since σ2 < ∞ is fixed, the upper bound above goes to 0 as n→∞. Since 0→ 0as n→∞, we utilize the Squeeze Theorem to conclude that

lim
n→∞

P(|X n − µ| ≥ ε) = 0

which shows that X n
p→ µ.
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Heuristic Illustration of the LLN
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Sample Illustration of the LLN
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Central Limit Theorem

Theorem: Central Limit Theorem

Given a sequence of i.i.d. random variables {Xi}∞i=1 with common mean µ andvariance σ2, define Sn := ∑n
i=1 Xi = X1 + · · · + Xn . Additionally, let Z be arandom variable such that Z ∼ N (0, 1). Then(

Sn − nµ
σ
√
n

)
 Z

which is often abbreviated (
Sn − nµ
σ
√
n

)
d≈ N (0, 1)

or, more accurately,
lim
n→∞

P

(
a ≤ Sn − nµ

σ
√
n
≤ b

) = 1√
2π

ż b

a
e−

1
2 z

2 dz
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Heuristic Illustration of the CLT
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Heuristic Illustration of the CLT
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Heuristic Illustration of the CLT

Shiny App!
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Proof Sketch

Proof.• Our proof shall utilize MGF’s. Define
Yn := Sn − nµ

σ
√
n

Then,
MYn (t) = E[etYn ] = E [exp{t · Sn − nµ

σ
√
n

}]
= E[exp{ t

σ
√
n

} n∑
i=1

(Xi − µ)]

= E[ n∏
i=1

e
t

σ
√
n

(Xi−µ)]
where we have utilized the definition Sn := ∑n

k=1 Xi to go from the first line tothe second.
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Proof Sketch

Proof.• At this point, we utilize the independence of the Xi ’s to interchange theexpectation and the product operator:
MYn (t) = E[ n∏

i=1

e
t

σ
√
n

(Xi−µ)]

= n∏
i=1

E

[
e

t
σ
√
n

(Xi−µ)]
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Proof Sketch

Proof.• Now, recall that we know the MacLaurin Series Expansion of ey :
ey = ∞∑

k=0

yk

k! = 1 + x + 1

2
x2 + · · ·

We shall apply a second-order Taylor Series Expansion to the quantity inside ourexpectation above:
MYn (t) = n∏

i=1

E

[
e

t
σ
√
n

(Xi−µ)]
= n∏

i=1

E

[
1 + t

σ
√
n

(Xi − µ) + t2

2σ2n (Xi − µ)2 + · · · ]

= n∏
i=1

1 + t

σ
√
n�
���:

0
E[Xi − µ] + t2

2σ2n��
���:

σ2
E[(Xi − µ)2] + · · ·

≈
n∏

i=1

[
1 + t2

2n

] = (1 + t2

2n

)n
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Proof Sketch

Proof.• Our final task will be to take the limit as n→∞. First recall that
lim
n→∞

(
1 + x

n

)n = ex

meaning
lim
n→∞

MYn (t) = lim
n→∞

[(
1 + t2

2n

)n]
= lim

n→∞

1 +
(
t2

2

)
n

n = e
t2
2

which we recognize as the MGF of the N (0, 1) distribution.
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Comments on the Proof Sketch

• Now, the above is just a proof sketch. Firstly, we would need to examine the “≈”signs more carefully. Additionally, we would need some sort of theorem thatguarantees that the limit of an MGF will accurately give the limiting distribution.But, these are considerations for a future class; for the purposes of this class, Imainly wanted to illustrate how the basic idea of the proof relates to materialwe’ve seen throughout this class!
• By the way, the idea of examining the “long-term” behavior of distributions (i.e.when n is large) relates heavily to a field of statistics called asymptotics.
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How Large is Large?

• Now, practically speaking, we are almost never afforded the luxury of an infinitesample size. So, a natural question that might arise is: under what practicalconditions does the CLT give us an approximation that is reasonably close to thetruth?• Admittedly, there isn’t a single agreed-upon set of cutoffs/criteria! I shall adopt arelatively simple one: n ≥ 25. (In other words, if n < 25, then the CLT may not bea good idea)
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Example

Every night, Melinda adds some money to her piggy bank. The amount she adds onany given day averages $5 with a standard deviation of $2. What is the probabilitythat after a month (30 days) the total amount of money in Melinda’s piggy bank willexceed $155?
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Sample Size Example

Suppose we have a sequence of i.i.d. random variables {Xi}∞i=1 with common mean µand variance σ2. Find the sample size n that ensures the sample mean X n exceedssome fixed value c with probability p.

Law of Large Numbers Central Limit Theorem A New Theorem... Or Is It?21



A New Theorem... Or Is It?



Leadup

• Let X ∼ Bin(n, p). Recall how we saw that X can be expressed as the sum of nindependent indicator random variables 1j , where
1j = {1 if j th trial resulted in success

0 otherwise
• Hm, sums of many random variables... sounds like a potential application of theCLT!• That’s right; we can actually use the CLT to approximate a Binomial Distributionwith a Normal distribution!
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De Moivre-Laplace Theorem

Theorem: De Moivre-Laplace Theorem

Let 0 < p < 1 be a fixed number, and suppose Sn ∼ Bin(n, p). Then(
Sn − np√
np(1− p)

)
 N (0, 1)

• In many ways, this is just an application of the CLT to the Binomial Theorem(after noting that a Binomially distributed random variable can be written as thesum of n i.i.d. random variables).• We often call this the “Normal Approximation to the Binomial.”• Now, just as with the CLT, we need to be a bit careful about how large n shouldbe in order for the approximation to be good. As a general rule of thumb, the DeMoivre-Laplace Theorem works for a Bin(n, p) distribution where:(1) n is large (say, n ≥ 25)(2) np ≥ 5(3) np(1− p) ≥ 5(though, again, there admittedly isn’t a single agreed-upon cutoff for any of thesevalues.)
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Another Approximation

• What do we do if n is large, but, say, np is small?• Well, perhaps you recall that we encountered limits in a Binomial setting oncelong ago... That’s right; in the context of the Poisson Process!• Specifically, we showed that if Xn ∼ Bin(n, p) we have, for sufficiently large n,
P(Xn = k) ≈ e−(np) · (np)k

k!• This gives us yet another approximation to the Binomial distribution; this time,when p is small!
Theorem

If X ∼ Bin(n, p), then the distribution of X is well-approximated by the Pois(np)distribution provided that:(1) n is large (n ≥ 25)(2) p is small (p ≤ 0.05)(3) np is small (np < 5)
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