14: Conditional Distributions and Expectation

PSTAT 120A: Summer 2022

Ethan P. Marzban
July 26, 2022

University of California, Santa Barbara



Where We've Been

e Axioms of Probability, Probability Spaces, Counting

e Conditional Probabilities, independence, etc.

e Basics of Random Variables (classification, p.m.f., c.m.f, moments)
e Discrete Distributions

e Continuous Distributions

e Transformations of Random Variables

e Double Integrals

e Random Vectors and the basics of multivariate probability

e Independence of random variables, and covariance/correlation
e Sums of Random Variables; Indicators

e Moment Generating Functions

e Tail Bounds

e Limit Theorems
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Leadup

Suppose | roll a fair six-sided die. Then, whatever number the die lands on, | flip

that many fair coins. Let X denote the number of heads.

e Now, X sounds binomial. But it isn't- what's the problem? that's right; the
binomial distribution requires a fixed number of Bernoulli trials.

e That is to say; information about N is needed in order to ascertain more
information about X.
e This will lead us into our discussion on conditional distributions.
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Conditioning on an Event; Discrete
Case



Leadup

e Recall the Law of Total Probability: given a probability space (Q, F,IP) and a
partition {B;}7_; of Q, then for any event A € F we have

P(A) =) P(A|B)P(B

e Suppose we replaced the event A with the more specific event {X = k}, for some
random variable X and some fixed value k. (Remember that
{X =k} :={we Q:X(w) =k} is in fact an event!):

=k) = ZP = k| B)P(B)

e This necessitates our first definition:
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Conditional Probability Mass Function

Definition: Conditional Probability Mass Function

Given a probability space (Q,F,P), an event B € F with P(B) > 0, and
a random variable X, we define the conditional probability mass function
(conditional p.m.f) pxg(k) to be

P({X = k} n B)

Px|3(k) = P(B)
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Conditional Probability Mass Function

Theorem: Conditional Probability Mass Function

The function px|g(k) as defined in the theorem above is a valid p.m.f
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Conditional Probability Mass Function

Proof.
e Nonnegativity is trivial.

e To check that px|g(k) sums to unity, we compute

< P{X=k}nB)
;PXUB(k) = ; S .

:IP(B ZIP{X_k}mB

e By the way, what did we use to go from the second-to-last equation to the last
one?
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Marginal P.M.F.'s from Conditional PM.Fs

Given a probability space (Q,F,P), a random variable X, and a partition
{B;i}"_; of Q such that P(B;) > 0, then

px(K) =) _ pxs,(k)P(B)
i=1
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Example

Suppose that | am a shopowner, and | know that the number of customers arriving at
my shop follows a Poisson distribution. However, | also know that the rate at which
customers arrive at my store is much lower on rainy days as opposed to dry days.
Specifically, on rainy days customers arrive at a rate A, per day, and on dry days
customers arrive at a rate Aq per day. Further suppose that there is a p = 10% chance
of rain tomorrow..

If X denotes the number of customers that will arrive at my store tomorrow, what is
the p.m.f. (probability mass function) of X?
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Conditional Expectation: First Pass

o Recall that px|g(k) is a probability mass function.
e Further recall that we can consider expected values as weighted averages of

p-m.f. values. This motivates our next definition:

Given a probability space (Q, F, P), a random variable X, an event B € F with
P(B) > 0, we define the conditional expectation of X, given B, to be

E[X | B]= Zk px|a(k ZklP =k|B)

e In this way, we can think of (X | B) as a random variable in itself, whose

expectation is given by the formula above.
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Marginal Expectations from Conditional P.M.F.'s

Given a probability space (Q,F,P), a random variable X, and a partition
{Bi}!_; of Q such that P(B;) > 0, then

EX]=) E[X|B] P(8)
i=1

Proof.

e We compute

EX]=) k-px(K)
k

:Zik-]P(X:MB;)-IP(Bf)

k i=1
n n

=Y Y k- PX=k|B) P(B)= Y k-PX=k|B)| P(B)
i=1 k i=1 k
n

=) E[X|B] P(B))
i=1
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Example (Revisited)

Returning to the shop example from above; what is E[X], the expected number of
customers that will arrive at my store tomorrow?
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Conditioning on a Random
Variable; Discrete Case



Leadup

e We have now discussed the notion of conditioning a random variable on an event,
where one of our key definitions was

P({X = k} n B)

px|g(k) = P(X = k| B) = P(B)

e What happens if we replace the event B with... a random variable?

e Before we go that far, let's consider replacing the event B with another event,

involving a random variable.

Definition: Conditional P.M.F.

Consider a probability space (Q, F,P) and two random variables X and Y.
Then the conditional probability mass function of X given Y = y is the fol-
lowing bivariate function:

X=x, Y= ,
Privlx [ 1) = P(X = x| ¥ =) = FOL 0 VN pvie)
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Conditional Expectation

e We can analogously extend our definition of conditional expectation:

Definition: Conditional Expectation

Consider a probability space (Q,F,P) and two random variables X and Y.
Then the conditional expectation of X given Y =y is the quantity

EX|Y =y] ::ZX'PXW(X'Y)

where we assume, implicitly, that y is such that P(Y = y) > 0.

e We also get a conditional form of the LOTUS:
Theorem: Conditional LOTUS

Consider a probability space (Q,F,P) and two random variables X and Y.
Then

Eg(X)| Y =yl=) g(x) pxy(x|y)
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Marginal from Conditional

Theorem

Given two random variables X and Y we have

px(x) =Y pxjv(x [ y)py(y)
y

EX]=) E[X|Y=ylpy(y)
y

e Of course, the sums above are implicitly ranging over the values of y for which
py(y) > 0.

e Also, though | have omitted explicit mention of the underlying probability space
(Q, F,P) [which | shall continue to do so, for the sake of convenience], we always
assume that all random variables are defined on an appropriate probability space.
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Example

The joint probability mass function of the random variables (X, Y) is given by the
following table:

(a) Find px|y
(b) Find px|y
(9) Find pxjy (x| ).

(d) Compute E[X | Y = y].

x | 0)
x|1)

(
(
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Example: Solutions

Part (a)

P(X =x, Y=0) _ px,y(x,0)

o pxjy(x |0 =P(X =x| Y =0)=

P(Y=0 ‘o
10 10 3 3
px|y(0]0) = T ~px,vy(0,0) = 2 10-2
10 10 1 1
1 == 1 =_.__ ="
px|y(1]0) 1 px,v(L,0) 4 10 2

e Note that px|y(x | 0) is in fact a valid probability mass function, as we expected!
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Example: Solutions

Part (b)

PX=x, Y=1) px,y(x,1)

o pxpyix|1)=P(X=x|Y=1)=

P(Y=1) %o
10 10 2 1
PX|Y(0|1)—?'PX,Y(OII)—K'E—g
10 10 4 2
1]1)= - Ly=20.4_2
px|y(1]1) 6 px,v(L,1) 6 103

e Note that px|y(x | 1) is in fact a valid probability mass function, as we expected!
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Example: Solutions

Part (c)

e Since py(y) =0 for any y that is neither 0 nor 1, we are actually done.

e In other words, for a fixed value of y, we have a p.m.f; said differently, each value
of y gives rise to a completely separate conditional mass function.
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Example: Solutions

Part (c)

1
EX | Y =01=) k-pxy(k0)
k=0

=

RIGE

Bl w

= (0)px|y(0,0) + (1)px|v(1,0) = (0) (

1
EX|Y=1=) k-pxy(k1)
k=0

[CRN]

o

-3

W=

= (0)pxy(0,1) + (1)px|y(1,1) = (0) (
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Decompress

e |'d like to use the previous example to illustrate some points.
e Firstly: for a fixed value of y, px|y(x | y) is a valid probability mass function.
e E[X | Y =y]is a function of y. For example, in our example above,
Ya ify=0
EIX|Y =yl=12 fy=1

undefined otherwise
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The Continuous Realm




Leadup

e Now that we've talked about conditional distributions/expectations in the discrete
setting, let’s consider what happens when we dip into the continuous realm.

e Firstly, we cannot directly adapt our definition of px y(k | y) into the continuous
setting because IP(Y = y) = 0! However, we can take the same idea and

translate it:

Let (X, Y) be a continuous bivariate random vector with joint p.d.f. fx y(x,y).
Then the conditional density function of X, given Y = y, is defined by

fxiv(x|y) = %{;)” for y st. fy(y) >0
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Conditional Densities

Some comments:

Recall that in the univariate setting, the value fx(x) of a density has nothing
inherently to do with probabilities. Similarly, the value fx|y(x | y) does not

represent a probability in itself!

Also, note that fx|y(x | y) is only defined for y s.t. fy(y) > 0. If we have a point y
such that fy(y’) = 0, then fx|y(x | y') is undefined (much like writing P(A | B) for
an event B such that P(B) = 0).

Additionally, for a fixed y, fx|y (- | y) is a valid p.df; nonnegativity is trivial, and

fo fxv(x | y) dx fo %&))’) dx

1 0 1
= f) | v de= g ) =1
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Using Conditional Densities

e Remember how we integrated densities to get probabilities?

PIX € AT Y =y) = [ fylx|y) de

e Also, we have

Elg(X) | Y =y]:= f" g(X)fx)y(x | y) dx
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Using Conditional Densities

Theorem

Given a continuous bivariate random vector (X, Y),

fi(x) = f iy (x | Y)fly) dy

—0Q
o0
Elg(X)] = [ Blelx)| Y = ylfviy) dy
—0Q
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Example

Suppose (X, Y) is a continuous bivariate random vector with joint p.d.f. given by

AMBxe™ f0<x<y<oo

&ﬂxw={

0 otherwise

(a) Find fy(y), the marginal density of Y. Use this to compute E[Y].
(b) Find fx|y(x | y), the conditional density of (X | Y = y)

(c) Compute P(X >1|Y =2).

(d) Compute E[X | Y =1]
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Conditional Expectation




Leadup

e Recall that E[X | Y = y]is in fact a function of y. Let us call this function g(y);
e gly):=EX|Y =y]

We also know that for any function h: R — R and a random variable Y the

quantity h(Y) is a random variable.

What happens when we take h to be g in the first point; i.e. what happens when
we consider the quantity g(Y), where g(y) :=EX | Y = y]?

Definition: Conditional Expectation

Given a bivariate random vector (X, Y) [discrete or continuous], we define the
conditional expectation of X given Y, denoted E[X | Y] to be E[X | Y]:= g(Y)

where g(y) =E[X | Y =y].

e Algorithmically, here is now we compute E[X | Y]
(1) First fix a y [such that fy(y) > 0 if (X, Y) is continuous or py(y) > 0 is (X, Y) is
discrete], and compute g(y) := E[X | Y = y] as outlined in the previous sections.
(2) Then, wherever you have a lowercase y in g(y), replace it with a capital Y.
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Example

As an example, let’s return to the example where (X, Y) was a discrete bivariate

random vector with joint p.m.f.

X 0]3h0 2ho

1| ho 4ho

la ify=0
e We saw that E[X | Y =y] =125 ify=1
undefined otherwise
s on the event {Y =0}

25 on the event {Y =1}
e Since P(Y = 0) = %o and P(Y = 1) = 25, we can write the p.m.f. of E[X | Y] as

e Then, E[X | Y]= {

4ho if k=1
P(EX | Y]= k)= §6ho if k=25
0 otherwise
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Looking Ahead

e Perhaps E[X | Y] seems like an incredibly abstract quantity that is very difficult
to interpret.

e However, it will turn out that E[X | Y] has some very incredibly useful properties.
Some uses include:
e Shortening expectation computations
e Providing a best predictor of X, given Y
e Forming the backbone of much of the theory behind Stochastic Processes (PSTAT
160A/B and 174).
e Unfortunately, we do not have time to investigate many of these in PSTAT 120A.
So, for now, | hope you will take my word that conditional expectations are very
useful, and that you will remember me fondly when you encounter them again :]
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Expectation Computations

e Thankfully, we do have the background (and time!) to investigate the first
“application” above. | first present a theorem:

Theorem: Law of Iterated Expectations (a.k.a. Tower Property)

E[X] = E[EX | Y]]

e The inner expectation is taken w.r.t. (X | Y) [which, remember, is a random
variable!] and the outer expectation is taken w.rt. Y.
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Law of Iterated Expectations

Proof.

o | provide the proof in the continuous case, and will ask you to investigate the
proof for the discrete case on your own.

o Let g(y) ;= E[X | Y = y] then
B(EX | Y] = EMY))= [ i) dy

= [T Ex 1Y =1 f0) ay = EIX
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Law of Total Variance

Theorem: Law of Total Variance

Var(X) = Var (E[X | Y]) + E[Var(X | Y)]
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Returning to the Beginning

As an example, let’s return to the very first motivating example | presented: Suppose |
roll a fair six-sided die. Then, whatever number the die lands on, | flip that many p—
coins. Let X denote the number of heads.

e Let N denote the number on which the die lands. Then N ~ DiscUnif{1,---,6}.

Additionally, (X | N = n) ~ Bin(n, p)

Therefore (X | N) ~ Bin(N, p) and E[X | N] = Np. (Note that this is a random
variable!)

e By the Law of Iterated Expectations:
1+6 p
E[X] = BELX | N = E[Np] = p E[N] = p- -2~ = P
e By the Law of Total Variance:

Var(X) = Var(E[X | N]) + E[Var(X | N)]

= Var(Np) + E[Np(1 — p)] = p*Var(N) + p(1 ~ pJE[N] = p2- 22 + p(1—p) - &

e As an aside, it turns out that the marginal p.m.f. px(k) of X is quite difficult to
find!
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