14: Conditional Distributions and Expectation

PSTAT 120A: Summer 2022

Ethan P. Marzban July 26, 2022

University of California, Santa Barbara

- Axioms of Probability, Probability Spaces, Counting
- Conditional Probabilities, independence, etc.
- Basics of Random Variables (classification, p.m.f., c.m.f., moments)
- Discrete Distributions
- Continuous Distributions
- Transformations of Random Variables
- Double Integrals
- Random Vectors and the basics of multivariate probability
- Independence of random variables, and covariance/correlation
- Sums of Random Variables; Indicators
- Moment Generating Functions
- Tail Bounds
- Limit Theorems

- Suppose I roll a fair six-sided die. Then, whatever number the die lands on, I flip that many fair coins. Let X denote the number of heads.
- Now, *X* sounds binomial. But it isn't- what's the problem? that's right; the binomial distribution requires a *fixed* number of Bernoulli trials.
- That is to say; information about *N* is needed in order to ascertain more information about *X*.
- This will lead us into our discussion on conditional distributions.

Conditioning on an Event; Discrete Case

Leadup

• Recall the Law of Total Probability: given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a partition $\{B_i\}_{i=1}^n$ of Ω , then for any event $A \in \mathcal{F}$ we have

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A \mid B_i) \mathbb{P}(B_i)$$

Suppose we replaced the event A with the more specific event {X = k}, for some random variable X and some fixed value k. (Remember that {X = k} := {ω ∈ Ω : X(ω) = k} is in fact an event!):

$$\mathbb{P}(X = k) = \sum_{i=1}^{n} \mathbb{P}(X = k \mid B_i) \mathbb{P}(B_i)$$

This necessitates our first definition:

Definition: Conditional Probability Mass Function

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, an event $B \in \mathcal{F}$ with $\mathbb{P}(B) > 0$, and a random variable X, we define the **conditional probability mass function** (conditional p.m.f.) $p_{X|B}(k)$ to be

$$p_{X|B}(k) = \frac{\mathbb{P}(\{X = k\} \cap B)}{\mathbb{P}(B)}$$

Conditioning on an Event; Discrete Case Conditioning on a Random Variable; Discrete Case The Continuous Realm Conditional Expectation

5

Theorem: Conditional Probability Mass Function

The function $p_{X|B}(k)$ as defined in the theorem above is a valid p.m.f.

Conditional Probability Mass Function

Proof.

- Nonnegativity is trivial.
- To check that $p_{X|B}(k)$ sums to unity, we compute

$$\sum_{k} p_{X|B}(k) = \sum_{k} \frac{\mathbb{P}(\{X = k\} \cap B)}{\mathbb{P}(B)}$$
$$= \frac{1}{\mathbb{P}(B)} \sum_{k} \mathbb{P}(\{X = k\} \cap B)$$
$$= \frac{1}{\mathbb{P}(B)} \cdot \mathbb{P}(B) = 1 \checkmark$$

• By the way, what did we use to go from the second-to-last equation to the last one?

Theorem

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a random variable X, and a partition $\{B_i\}_{i=1}^n$ of Ω such that $\mathbb{P}(B_i) > 0$, then

$$p_X(k) = \sum_{i=1}^n p_{X|B_i}(k) \mathbb{P}(B_i)$$

8

Suppose that I am a shopowner, and I know that the number of customers arriving at my shop follows a Poisson distribution. However, I also know that the rate at which customers arrive at my store is much lower on rainy days as opposed to dry days. Specifically, on rainy days customers arrive at a rate λ_r per day, and on dry days customers arrive at a rate λ_d per day. Further suppose that there is a p = 10% chance of rain tomorrow.

If X denotes the number of customers that will arrive at my store tomorrow, what is the p.m.f. (probability mass function) of X?

Conditional Expectation: First Pass

- Recall that $p_{X|B}(k)$ is a probability mass function.
- Further recall that we can consider expected values as weighted averages of p.m.f. values. This motivates our next definition:

Definition

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a random variable X, an event $B \in \mathcal{F}$ with $\mathbb{P}(B) > 0$, we define the **conditional expectation** of X, given B, to be

$$\mathbb{E}[X \mid B] = \sum_{k} k \cdot p_{X|B}(k) = \sum_{k} k \cdot \mathbb{P}(X = k \mid B)$$

• In this way, we can think of (*X* | *B*) as a random variable in itself, whose expectation is given by the formula above.

Marginal Expectations from Conditional P.M.F.'s

Theorem

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a random variable X, and a partition $\{B_i\}_{i=1}^n$ of Ω such that $\mathbb{P}(B_i) > 0$, then

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X \mid B_i] \cdot \mathbb{P}(B_i)$$

Proof.

• We compute

$$\mathbb{E}[X] = \sum_{k} k \cdot p_{X}(k)$$

$$= \sum_{k} \sum_{i=1}^{n} k \cdot \mathbb{P}(X = k \mid B_{i}) \cdot \mathbb{P}(B_{i})$$

$$= \sum_{i=1}^{n} \sum_{k} k \cdot \mathbb{P}(X = k \mid B_{i}) \cdot \cdot \mathbb{P}(B_{i}) = \sum_{i=1}^{n} \left(\sum_{k} k \cdot \mathbb{P}(X = k \mid B_{i}) \right) \cdot \mathbb{P}(B_{i})$$

$$= \sum_{i=1}^{n} \mathbb{E}[X \mid B_{i}] \cdot \mathbb{P}(B_{i})$$

Conditioning on an Event; Discrete Case

Conditioning on a Random Variable; Discrete Case

The Continuous Realm

Returning to the shop example from above; what is $\mathbb{E}[X]$, the expected number of customers that will arrive at my store tomorrow?

Conditioning on a Random Variable; Discrete Case

Leadup

• We have now discussed the notion of conditioning a random variable on an event, where one of our key definitions was

$$p_{X|B}(k) := \mathbb{P}(X = k \mid B) = \frac{\mathbb{P}(\{X = k\} \cap B)}{\mathbb{P}(B)}$$

- What happens if we replace the event *B* with... a random variable?
- Before we go that far, let's consider replacing the event *B* with another *event*, involving a random variable.

Definition: Conditional P.M.F.

Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and two random variables X and Y. Then the **conditional probability mass function** of X given Y = y is the following bivariate function:

$$p_{X|Y}(x \mid y) = \mathbb{P}(X = x \mid Y = y) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(Y = y)} = \frac{p_{X,Y}(x, y)}{p_Y(y)}$$

• We can analogously extend our definition of conditional expectation:

Definition: Conditional Expectation

Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and two random variables X and Y. Then the **conditional expectation** of X given Y = y is the quantity

$$\mathbb{E}[X \mid Y = y] := \sum_{x} x \cdot p_{X|Y}(x \mid y)$$

where we assume, implicitly, that *y* is such that $\mathbb{P}(Y = y) > 0$.

• We also get a conditional form of the LOTUS:

Theorem: Conditional LOTUS

Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and two random variables X and Y. Then

$$\mathbb{E}[g(X) \mid Y = y] = \sum_{x} g(x) \cdot p_{X|Y}(x \mid y)$$

Theorem

Given two random variables X and Y we have

$$p_X(x) = \sum_{y} p_{X|Y}(x \mid y) p_Y(y)$$
$$\mathbb{E}[X] = \sum_{y} \mathbb{E}[X \mid Y = y] p_Y(y)$$

- Of course, the sums above are implicitly ranging over the values of y for which $p_Y(y) > 0$.
- Also, though I have omitted explicit mention of the underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$ [which I shall continue to do so, for the sake of convenience], we always assume that all random variables are defined on an appropriate probability space.

Example

The joint probability mass function of the random variables (X, Y) is given by the following table:

$$\begin{array}{c|c} & & & & Y \\ 0 & 1 \\ & & & 0 \\ & & & 1 \\ & & & 1/_{10} & 4/_{10} \end{array}$$

- (a) Find $p_{X|Y}(x \mid 0)$
- (b) Find $p_{X|Y}(x \mid 1)$
- (c) Find $p_{X|Y}(x \mid y)$.
- (d) Compute $\mathbb{E}[X \mid Y = y]$.

Part (a)

•
$$p_{X|Y}(x \mid 0) = \mathbb{P}(X = x \mid Y = 0) = \frac{\mathbb{P}(X = x, Y = 0)}{\mathbb{P}(Y = 0)} = \frac{p_{X,Y}(x, 0)}{\frac{4}{10}}$$

 $p_{X|Y}(0 \mid 0) = \frac{10}{4} \cdot p_{X,Y}(0, 0) = \frac{10}{4} \cdot \frac{3}{10} = \frac{3}{4}$
 $p_{X|Y}(1 \mid 0) = \frac{10}{4} \cdot p_{X,Y}(1, 0) = \frac{10}{4} \cdot \frac{1}{10} = \frac{1}{4}$

• Note that $p_{X|Y}(x \mid 0)$ is in fact a valid probability mass function, as we expected!

Part (b)

•
$$p_{X|Y}(x \mid 1) = \mathbb{P}(X = x \mid Y = 1) = \frac{\mathbb{P}(X = x, Y = 1)}{\mathbb{P}(Y = 1)} = \frac{p_{X,Y}(x, 1)}{\frac{6}{10}}$$

 $p_{X|Y}(0 \mid 1) = \frac{10}{6} \cdot p_{X,Y}(0, 1) = \frac{10}{6} \cdot \frac{2}{10} = \frac{1}{3}$
 $p_{X|Y}(1 \mid 1) = \frac{10}{6} \cdot p_{X,Y}(1, 1) = \frac{10}{6} \cdot \frac{4}{10} = \frac{2}{3}$

• Note that $p_{X|Y}(x \mid 1)$ is in fact a valid probability mass function, as we expected!

Part (c)

- Since $p_Y(y) = 0$ for any y that is neither 0 nor 1, we are actually done.
- In other words, for a fixed value of *y*, we have a p.m.f.; said differently, each value of *y* gives rise to a completely separate conditional mass function.

Part (c)

$$\begin{split} \mathbb{E}[X \mid Y = 0] &= \sum_{k=0}^{1} k \cdot p_{X|Y}(k, 0) \\ &= (0)p_{X|Y}(0, 0) + (1)p_{X|Y}(1, 0) = (0) \left(\frac{3}{4}\right) + (1) \left(\frac{1}{4}\right) = \frac{1}{4} \\ \mathbb{E}[X \mid Y = 1] &= \sum_{k=0}^{1} k \cdot p_{X|Y}(k, 1) \\ &= (0)p_{X|Y}(0, 1) + (1)p_{X|Y}(1, 1) = (0) \left(\frac{1}{3}\right) + (1) \left(\frac{2}{3}\right) = \frac{2}{3} \end{split}$$

- I'd like to use the previous example to illustrate some points.
- Firstly: for a fixed value of y, $p_{X|Y}(x \mid y)$ is a valid probability mass function.
- $\mathbb{E}[X \mid Y = y]$ is a function of y. For example, in our example above,

$$\mathbb{E}[X \mid Y = y] = \begin{cases} \frac{1}{4} & \text{if } y = 0\\ \frac{2}{3} & \text{if } y = 1\\ \text{undefined otherwise} \end{cases}$$

The Continuous Realm

Leadup

- Now that we've talked about conditional distributions/expectations in the discrete setting, let's consider what happens when we dip into the continuous realm.
- Firstly, we cannot directly adapt our definition of $p_{X,Y}(k \mid y)$ into the continuous setting because $\mathbb{P}(Y = y) = 0!$ However, we can take the same *idea* and translate it:

Definition

Let (X, Y) be a continuous bivariate random vector with joint p.d.f. $f_{X,Y}(x, y)$. Then the **conditional density function** of X, given Y = y, is defined by

$$f_{X|Y}(x \mid y) := \frac{f_{X,Y}(x, y)}{f_{Y}(y)}$$
 for y s.t. $f_{Y}(y) > 0$

- Some comments:
- Recall that in the univariate setting, the value $f_X(x)$ of a density has nothing inherently to do with probabilities. Similarly, the value $f_{X|Y}(x | y)$ **does not** represent a probability in itself!
- Also, note that $f_{X|Y}(x \mid y)$ is only defined for y s.t. $f_Y(y) > 0$. If we have a point y' such that $f_Y(y') = 0$, then $f_{X|Y}(x \mid y')$ is **undefined** (much like writing $\mathbb{P}(A \mid B)$ for an event B such that $\mathbb{P}(B) = 0$).
- Additionally, for a fixed y, $f_{X|Y}(\cdot \mid y)$ is a valid p.d.f.; nonnegativity is trivial, and

$$\begin{split} \int_{-\infty}^{\infty} f_{X|Y}(x \mid y) \, \mathrm{d}x &= \int_{-\infty}^{\infty} \frac{f_{X,Y}(x, y)}{f_Y(y)} \, \mathrm{d}x \\ &= \frac{1}{f_Y(y)} \cdot \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, \mathrm{d}x = \frac{1}{f_Y(y)} \cdot f_Y(y) = 1 \checkmark \end{split}$$

25

• Remember how we integrated densities to get probabilities?

Definition $\mathbb{P}(X \in A \mid Y = y) = \int_{A} f_{X|Y}(x \mid y) \, \mathrm{d}x$

• Also, we have

Definition

$$\mathbb{E}[g(X) \mid Y = y] := \int_{-\infty}^{\infty} g(x) f_{X|Y}(x \mid y) \, \mathrm{d}x$$

Theorem

Given a continuous bivariate random vector (X, Y),

$$f_X(x) = \int_{-\infty}^{\infty} f_{X|Y}(x \mid y) f_Y(y) \, \mathrm{d}y$$
$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} \mathbb{E}[g(X) \mid Y = y] f_Y(y) \, \mathrm{d}y$$

Conditioning on an Event; Discrete Case Conditioning on a Random Variable; Discrete Case The Continuous Realm Conditional Expectation

27

Suppose (X, Y) is a continuous bivariate random vector with joint p.d.f. given by

$$f_{X,Y}(x,y) = \begin{cases} \lambda^3 x e^{-\lambda y} & \text{if } 0 < x < y < \infty \\ 0 & \text{otherwise} \end{cases}$$

- (a) Find $f_Y(y)$, the marginal density of Y. Use this to compute $\mathbb{E}[Y]$.
- (b) Find $f_{X|Y}(x \mid y)$, the conditional density of $(X \mid Y = y)$
- (c) Compute $\mathbb{P}(X \ge 1 \mid Y = 2)$.
- (d) Compute $\mathbb{E}[X \mid Y = 1]$

Conditional Expectation

Leadup

- Recall that E[X | Y = y] is in fact a function of y. Let us call this function g(y);
 i.e. g(y) := E[X | Y = y].
- We also know that for any function $h : \mathbb{R} \to \mathbb{R}$ and a random variable Y the quantity h(Y) is a random variable.
- What happens when we take *h* to be *g* in the first point; i.e. what happens when we consider the quantity g(Y), where $g(y) := \mathbb{E}[X \mid Y = y]$?

Definition: Conditional Expectation

Given a bivariate random vector (*X*, *Y*) [discrete or continuous], we define the **conditional expectation** of *X* given *Y*, denoted $\mathbb{E}[X \mid Y]$, to be $\mathbb{E}[X \mid Y] := g(Y)$ where $g(y) = \mathbb{E}[X \mid Y = y]$.

- Algorithmically, here is now we compute $\mathbb{E}[X \mid Y]$:
 - First fix a y [such that f_Y(y) > 0 if (X, Y) is continuous or p_Y(y) > 0 is (X, Y) is discrete], and compute g(y) := E[X | Y = y] as outlined in the previous sections.
 - (2) Then, wherever you have a lowercase y in g(y), replace it with a capital Y.

Example

As an example, let's return to the example where (X, Y) was a discrete bivariate random vector with joint p.m.f.

$$\begin{array}{c|c} & & & & Y \\ 0 & 1 \\ \\ & & & 0 \\ & & 1 \\ & & & 1/10 \\ \end{array}$$

• We saw that
$$\mathbb{E}[X \mid Y = y] = \begin{cases} 1/4 & \text{if } y = 0\\ 2/3 & \text{if } y = 1 \end{cases}$$

undefined otherwise

• Then,
$$\mathbb{E}[X \mid Y] = \begin{cases} 1/4 & \text{on the event } \{Y = 0\} \\ 2/3 & \text{on the event } \{Y = 1\} \end{cases}$$

• Since $\mathbb{P}(Y = 0) = 4/10$ and $\mathbb{P}(Y = 1) = 2/3$, we can write the p.m.f. of $\mathbb{E}[X \mid Y]$ as

$$\mathbb{P}(\mathbb{E}[X \mid Y] = k) = \begin{cases} 4/10 & \text{if } k = 1/4 \\ 6/10 & \text{if } k = 2/3 \\ 0 & \text{otherwise} \end{cases}$$

- Perhaps $\mathbb{E}[X \mid Y]$ seems like an incredibly abstract quantity that is very difficult to interpret.
- However, it will turn out that $\mathbb{E}[X \mid Y]$ has some very incredibly useful properties. Some uses include:
 - Shortening expectation computations
 - Providing a best predictor of X, given Y
 - Forming the backbone of much of the theory behind Stochastic Processes (PSTAT 160A/B and 174).
- Unfortunately, we do not have time to investigate many of these in PSTAT 120A.
 So, for now, I hope you will take my word that conditional expectations are very useful, and that you will remember me fondly when you encounter them again :]

• Thankfully, we *do* have the background (and time!) to investigate the first "application" above. I first present a theorem:

Theorem: Law of Iterated Expectations (a.k.a. Tower Property)

 $\mathbb{E}[X] = \mathbb{E}\left[\mathbb{E}[X \mid Y]\right]$

• The inner expectation is taken w.r.t. $(X \mid Y)$ [which, remember, is a random variable!] and the outer expectation is taken w.r.t. *Y*.

Proof.

- I provide the proof in the continuous case, and will ask you to investigate the proof for the discrete case on your own.
- Let $g(y) := \mathbb{E}[X \mid Y = y]$; then

$$\mathbb{E}\left[\mathbb{E}[X \mid Y]\right] = \mathbb{E}[v(Y)] = \int_{-\infty}^{\infty} v(y) f_Y(y) \, \mathrm{d}y$$
$$= \int_{-\infty}^{\infty} \mathbb{E}[X \mid Y = y] \cdot f_Y(y) \, \mathrm{d}y = \mathbb{E}[X]$$

Theorem: Law of Total Variance

 $\operatorname{Var}(X) = \operatorname{Var}(\mathbb{E}[X \mid Y]) + \mathbb{E}[\operatorname{Var}(X \mid Y)]$

Conditioning on an Event; Discrete Case Conditioning on a Random Variable; Discrete Case The Continuous Realm Conditional Expectation

35

Returning to the Beginning

As an example, let's return to the very first motivating example I presented: Suppose I roll a fair six-sided die. Then, whatever number the die lands on, I flip that many p-coins. Let X denote the number of heads.

- Let *N* denote the number on which the die lands. Then $N \sim \text{DiscUnif}\{1, \dots, 6\}$.
- Additionally, $(X \mid N = n) \sim Bin(n, p)$
- Therefore $(X \mid N) \sim Bin(N, p)$ and $\mathbb{E}[X \mid N] = Np$. (Note that this is a random variable!)
- By the Law of Iterated Expectations:

$$\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X \mid N]] = \mathbb{E}[Np] = p \cdot \mathbb{E}[N] = p \cdot \frac{1+6}{2} = \frac{7p}{2}$$

• By the Law of Total Variance:

 $Var(X) = Var(\mathbb{E}[X \mid N]) + \mathbb{E}[Var(X \mid N)]$

$$= \operatorname{Var}(Np) + \mathbb{E}[Np(1-p)] = p^{2} \operatorname{Var}(N) + p(1-p)\mathbb{E}[N] = \frac{p^{2} \cdot \frac{35}{12} + p(1-p) \cdot \frac{7}{2}}{p^{2} \cdot \frac{35}{12} + p(1-p) \cdot \frac{7}{2}}$$

• As an aside, it turns out that the marginal p.m.f. $p_X(k)$ of X is quite difficult to find!