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Where We’ve Been

• Axioms of Probability, Probability Spaces, Counting• Conditional Probabilities, independence, etc.• Basics of Random Variables (classification, p.m.f., c.m.f., moments)• Discrete Distributions• Continuous Distributions• Transformations of Random Variables• Double Integrals• Random Vectors and the basics of multivariate probability• Independence of random variables, and covariance/correlation• Sums of Random Variables; Indicators• Moment Generating Functions• Tail Bounds• Limit Theorems
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Leadup

• Suppose I roll a fair six-sided die. Then, whatever number the die lands on, I flipthat many fair coins. Let X denote the number of heads.• Now, X sounds binomial. But it isn’t- what’s the problem? that’s right; thebinomial distribution requires a fixed number of Bernoulli trials.• That is to say; information about N is needed in order to ascertain moreinformation about X .• This will lead us into our discussion on conditional distributions.
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Conditioning on an Event; Discrete
Case



Leadup

• Recall the Law of Total Probability: given a probability space (Ω, F ,P) and apartition {Bi}ni=1 of Ω, then for any event A ∈ F we have
P(A) = n∑

i=1

P(A | Bi )P(Bi )
• Suppose we replaced the event A with the more specific event {X = k}, for somerandom variable X and some fixed value k . (Remember that

{X = k} := {ω ∈ Ω : X (ω) = k} is in fact an event!):
P(X = k) = n∑

i=1

P(X = k | Bi )P(Bi )
• This necessitates our first definition:
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Conditional Probability Mass Function

Definition: Conditional Probability Mass Function

Given a probability space (Ω, F ,P), an event B ∈ F with P(B) > 0, anda random variable X , we define the conditional probability mass function(conditional p.m.f.) pX |B (k) to be
pX |B (k) = P({X = k} ∩ B)

P(B)
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Conditional Probability Mass Function

Theorem: Conditional Probability Mass Function

The function pX |B (k) as defined in the theorem above is a valid p.m.f.
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Conditional Probability Mass Function

Proof.• Nonnegativity is trivial.• To check that pX |B (k) sums to unity, we compute∑
k

pX |B (k) =∑
k

P({X = k} ∩ B)
P(B)

= 1

P(B) ∑
k

P({X = k} ∩ B)
= 1

P(B) ·P(B) = 1 ✓

• By the way, what did we use to go from the second-to-last equation to the lastone?
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Marginal P.M.F.’s from Conditional P.M.F.’s

Theorem

Given a probability space (Ω, F ,P), a random variable X , and a partition
{Bi}ni=1 of Ω such that P(Bi ) > 0, then

pX (k) = n∑
i=1

pX |Bi
(k)P(Bi )
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Example

Suppose that I am a shopowner, and I know that the number of customers arriving atmy shop follows a Poisson distribution. However, I also know that the rate at whichcustomers arrive at my store is much lower on rainy days as opposed to dry days.Specifically, on rainy days customers arrive at a rate λr per day, and on dry dayscustomers arrive at a rate λd per day. Further suppose that there is a p = 10% chanceof rain tomorrow..
If X denotes the number of customers that will arrive at my store tomorrow, what isthe p.m.f. (probability mass function) of X?
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Conditional Expectation: First Pass

• Recall that pX |B (k) is a probability mass function.• Further recall that we can consider expected values as weighted averages ofp.m.f. values. This motivates our next definition:
Definition

Given a probability space (Ω, F ,P), a random variable X , an event B ∈ F with
P(B) > 0, we define the conditional expectation of X , given B , to be

E[X | B ] =∑
k

k · pX |B (k) =∑
k

k ·P(X = k | B)
• In this way, we can think of (X | B) as a random variable in itself, whoseexpectation is given by the formula above.
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Marginal Expectations from Conditional P.M.F.’s

Theorem

Given a probability space (Ω, F ,P), a random variable X , and a partition
{Bi}ni=1 of Ω such that P(Bi ) > 0, then

E[X ] = n∑
i=1

E[X | Bi ] ·P(Bi )
Proof.• We compute

E[X ] =∑
k

k · pX (k)
=∑

k

n∑
i=1

k ·P(X = k | Bi ) ·P(Bi )
= n∑

i=1

∑
k

k ·P(X = k | Bi ) · ·P(Bi ) = n∑
i=1

(∑
k

k ·P(X = k | Bi )) ·P(Bi )
= n∑

i=1

E[X | Bi ] ·P(Bi )
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Example (Revisited)

Returning to the shop example from above; what is E[X ], the expected number ofcustomers that will arrive at my store tomorrow?
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Conditioning on a Random
Variable; Discrete Case



Leadup

• We have now discussed the notion of conditioning a random variable on an event,where one of our key definitions was
pX |B (k) := P(X = k | B) = P({X = k} ∩ B)

P(B)
• What happens if we replace the event B with... a random variable?• Before we go that far, let’s consider replacing the event B with another event,involving a random variable.

Definition: Conditional P.M.F.

Consider a probability space (Ω, F ,P) and two random variables X and Y .Then the conditional probability mass function of X given Y = y is the fol-lowing bivariate function:
pX |Y (x | y ) = P(X = x | Y = y ) = P(X = x , Y = y )

P(Y = y ) = pX ,Y (x , y )
pY (y )
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Conditional Expectation

• We can analogously extend our definition of conditional expectation:
Definition: Conditional Expectation

Consider a probability space (Ω, F ,P) and two random variables X and Y .Then the conditional expectation of X given Y = y is the quantity
E[X | Y = y ] :=∑

x

x · pX |Y (x | y )
where we assume, implicitly, that y is such that P(Y = y ) > 0.

• We also get a conditional form of the LOTUS:
Theorem: Conditional LOTUS

Consider a probability space (Ω, F ,P) and two random variables X and Y .Then
E[g (X ) | Y = y ] =∑

x

g (x) · pX |Y (x | y )
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Marginal from Conditional

Theorem

Given two random variables X and Y we have
pX (x) =∑

y

pX |Y (x | y )pY (y )
E[X ] =∑

y

E[X | Y = y ]pY (y )
• Of course, the sums above are implicitly ranging over the values of y for which

pY (y ) > 0.• Also, though I have omitted explicit mention of the underlying probability space(Ω, F ,P) [which I shall continue to do so, for the sake of convenience], we alwaysassume that all random variables are defined on an appropriate probability space.

Conditioning on an Event; Discrete Case Conditioning on a Random Variable; Discrete Case The Continuous Realm Conditional Expectation16



Example

The joint probability mass function of the random variables (X ,Y ) is given by thefollowing table:
Y

0 1

X 0 3/10 2/10

1 1/10 4/10

(a) Find pX |Y (x | 0)(b) Find pX |Y (x | 1)(c) Find pX |Y (x | y ).(d) Compute E[X | Y = y ].
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Example: Solutions

Part (a)

• pX |Y (x | 0) = P(X = x | Y = 0) = P(X = x , Y = 0)
P(Y = 0) = pX ,Y (x , 0)

4/10

pX |Y (0 | 0) = 10

4
· pX ,Y (0, 0) = 10

4
· 3

10
= 3

4

pX |Y (1 | 0) = 10

4
· pX ,Y (1, 0) = 10

4
· 1

10
= 1

4

• Note that pX |Y (x | 0) is in fact a valid probability mass function, as we expected!
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Example: Solutions

Part (b)

• pX |Y (x | 1) = P(X = x | Y = 1) = P(X = x , Y = 1)
P(Y = 1) = pX ,Y (x , 1)

6/10

pX |Y (0 | 1) = 10

6
· pX ,Y (0, 1) = 10

6
· 2

10
= 1

3

pX |Y (1 | 1) = 10

6
· pX ,Y (1, 1) = 10

6
· 4

10
= 2

3

• Note that pX |Y (x | 1) is in fact a valid probability mass function, as we expected!
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Example: Solutions

Part (c)

• Since pY (y ) = 0 for any y that is neither 0 nor 1, we are actually done.• In other words, for a fixed value of y , we have a p.m.f.; said differently, each valueof y gives rise to a completely separate conditional mass function.
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Example: Solutions

Part (c)

E[X | Y = 0] = 1∑
k=0

k · pX |Y (k, 0)
= (0)pX |Y (0, 0) + (1)pX |Y (1, 0) = (0)(3

4

)+ (1)(1

4

) = 1

4

E[X | Y = 1] = 1∑
k=0

k · pX |Y (k, 1)
= (0)pX |Y (0, 1) + (1)pX |Y (1, 1) = (0)(1

3

)+ (1)(2

3

) = 2

3
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Decompress

• I’d like to use the previous example to illustrate some points.• Firstly: for a fixed value of y , pX |Y (x | y ) is a valid probability mass function.• E[X | Y = y ] is a function of y . For example, in our example above,
E[X | Y = y ] =


1/4 if y = 0

2/3 if y = 1undefined otherwise
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The Continuous Realm



Leadup

• Now that we’ve talked about conditional distributions/expectations in the discretesetting, let’s consider what happens when we dip into the continuous realm.• Firstly, we cannot directly adapt our definition of pX ,Y (k | y ) into the continuoussetting because P(Y = y ) = 0! However, we can take the same idea andtranslate it:
Definition

Let (X ,Y ) be a continuous bivariate random vector with joint p.d.f. fX ,Y (x , y ).Then the conditional density function of X , given Y = y , is defined by
fX |Y (x | y ) := fX ,Y (x , y )

fY (y ) for y s.t. fY (y ) > 0
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Conditional Densities

• Some comments:• Recall that in the univariate setting, the value fX (x) of a density has nothinginherently to do with probabilities. Similarly, the value fX |Y (x | y ) does not
represent a probability in itself!• Also, note that fX |Y (x | y ) is only defined for y s.t. fY (y ) > 0. If we have a point y ′such that fY (y ′) = 0, then fX |Y (x | y ′) is undefined (much like writing P(A | B) foran event B such that P(B) = 0).• Additionally, for a fixed y , fX |Y (· | y ) is a valid p.d.f.; nonnegativity is trivial, and

ż ∞

−∞
fX |Y (x | y ) dx = ż ∞

−∞

fX ,Y (x , y )
fY (y ) dx

= 1

fY (y ) ·
ż ∞

−∞
fX ,Y (x , y ) dx = 1

fY (y ) · fY (y ) = 1 ✓
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Using Conditional Densities

• Remember how we integrated densities to get probabilities?
Definition

P(X ∈ A | Y = y ) = ż

A
fX |Y (x | y ) dx

• Also, we have
Definition

E[g (X ) | Y = y ] := ż ∞

−∞
g (x)fX |Y (x | y ) dx
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Using Conditional Densities

Theorem

Given a continuous bivariate random vector (X ,Y ),
fX (x) = ż ∞

−∞
fX |Y (x | y )fY (y ) dy

E[g (X )] = ż ∞

−∞
E[g (X ) | Y = y ]fY (y ) dy

Conditioning on an Event; Discrete Case Conditioning on a Random Variable; Discrete Case The Continuous Realm Conditional Expectation27



Example

Suppose (X ,Y ) is a continuous bivariate random vector with joint p.d.f. given by
fX ,Y (x , y ) = {λ3xe−λy if 0 < x < y < ∞

0 otherwise
(a) Find fY (y ), the marginal density of Y . Use this to compute E[Y ].(b) Find fX |Y (x | y ), the conditional density of (X | Y = y )(c) Compute P(X ≥ 1 | Y = 2).(d) Compute E[X | Y = 1]
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Conditional Expectation



Leadup

• Recall that E[X | Y = y ] is in fact a function of y . Let us call this function g (y );i.e. g (y ) := E[X | Y = y ].• We also know that for any function h : R → R and a random variable Y thequantity h(Y ) is a random variable.• What happens when we take h to be g in the first point; i.e. what happens whenwe consider the quantity g (Y ), where g (y ) := E[X | Y = y ]?
Definition: Conditional Expectation

Given a bivariate random vector (X ,Y ) [discrete or continuous], we define the
conditional expectation of X given Y , denotedE[X | Y ], to beE[X | Y ] := g (Y )where g (y ) = E[X | Y = y ].

• Algorithmically, here is now we compute E[X | Y ]:(1) First fix a y [such that fY (y ) > 0 if (X ,Y ) is continuous or pY (y ) > 0 is (X ,Y ) isdiscrete], and compute g (y ) := E[X | Y = y ] as outlined in the previous sections.(2) Then, wherever you have a lowercase y in g (y ), replace it with a capital Y .
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Example

As an example, let’s return to the example where (X ,Y ) was a discrete bivariaterandom vector with joint p.m.f.
Y

0 1

X 0 3/10 2/10

1 1/10 4/10

• We saw that E[X | Y = y ] =


1/4 if y = 0

2/3 if y = 1undefined otherwise
• Then, E[X | Y ] = {1/4 on the event {Y = 0}

2/3 on the event {Y = 1}• Since P(Y = 0) = 4/10 and P(Y = 1) = 2/3, we can write the p.m.f. of E[X | Y ] as
P(E[X | Y ] = k) =


4/10 if k = 1/4
6/10 if k = 2/3
0 otherwise
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Looking Ahead

• Perhaps E[X | Y ] seems like an incredibly abstract quantity that is very difficultto interpret.• However, it will turn out that E[X | Y ] has some very incredibly useful properties.Some uses include:• Shortening expectation computations• Providing a best predictor of X , given Y• Forming the backbone of much of the theory behind Stochastic Processes (PSTAT160A/B and 174).• Unfortunately, we do not have time to investigate many of these in PSTAT 120A.So, for now, I hope you will take my word that conditional expectations are veryuseful, and that you will remember me fondly when you encounter them again :]
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Expectation Computations

• Thankfully, we do have the background (and time!) to investigate the first“application” above. I first present a theorem:
Theorem: Law of Iterated Expectations (a.k.a. Tower Property)

E[X ] = E [E[X | Y ]]
• The inner expectation is taken w.r.t. (X | Y ) [which, remember, is a randomvariable!] and the outer expectation is taken w.r.t. Y .
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Law of Iterated Expectations

Proof.• I provide the proof in the continuous case, and will ask you to investigate theproof for the discrete case on your own.• Let g (y ) := E[X | Y = y ]; then
E [E[X | Y ]] = E[v (Y )] = ż ∞

−∞
v (y )fY (y ) dy

= ż ∞

−∞
E[X | Y = y ] · fY (y ) dy = E[X ]
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Law of Total Variance

Theorem: Law of Total Variance

Var(X ) = Var (E[X | Y ]) +E [Var(X | Y )]
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Returning to the Beginning

As an example, let’s return to the very first motivating example I presented: Suppose Iroll a fair six-sided die. Then, whatever number the die lands on, I flip that many p−coins. Let X denote the number of heads.
• Let N denote the number on which the die lands. Then N ∼ DiscUnif{1, · · · , 6}.• Additionally, (X | N = n) ∼ Bin(n, p)• Therefore (X | N) ∼ Bin(N, p) and E[X | N ] = Np. (Note that this is a randomvariable!)• By the Law of Iterated Expectations:

E[X ] = E[E[X | N ]] = E[Np] = p ·E[N ] = p · 1 + 6

2
= 7p

2

• By the Law of Total Variance:
Var(X ) = Var(E[X | N ]) +E[Var(X | N)]

= Var(Np) +E[Np(1 − p)] = p2Var(N) + p(1 − p)E[N ] = p2 · 35
12

+ p(1 − p) · 7
2

• As an aside, it turns out that the marginal p.m.f. pX (k) of X is quite difficult tofind!
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