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Welcome!

• Welcome to PSTAT 120A!• About me:
Name: Ethan
Email: epmarzban@pstat.ucsb.edu

OH: T, Th 4 - 5:30pm (PDT)
OH Location: South Hall 5421 (the “StatLab”)

• Important Course Resources:• Gauchospace (main course website)• Public Course Website: pstat120a.github.io• Gradescope: for submitting HW (and receiving feedback), and quizzes
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Logistics

• Homeworks: TWO sets per week; one due Tuesday, one due Friday.• Admittedly, perhaps a bit more challenging than the lecture examples... but not toomuch more!• Collaboration is encouraged; just please ensure that whatever you submit is your ownwork.
• Quizzes: 3-5 questions, 20 minutes, remote (asynchronous) on Thursdays. Takeplace on Gradescope, between 6pm and 11:59pm.• Not designed to be overly challenging; if you’re keeping up with lecture material andhomework, I don’t think you should have any trouble!
• Exams: One midterm and one Final• Midterm: Thursday, July 7 from 2 - 3:05pm (during lecture)• Final: Thursday July 28, 4 - 7pm

• Please read the syllabus!
Probability Crash Course on Set Theory Back to Probability Counting/Combinatorics2



Probability
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Probability

• Uncertainty surrounds us!• Statistics is, in many ways, the study of uncertainty.• Probability is the language of uncertainty; it gives us a way to place our beliefsin an uncertain world against a rigorous mathematical backdrop.• Yes- math!• Probability is, in its truest form, an offshoot of mathematics.• Hence, there is a need for a strong mathematical background.
• Please make sure you are very comfortable with calculus before coming into thiscourse.• I’ve posted some review material on our course sites for you to consult, if you feel yourcalculus isn’t quite up to par,• I also welcome any questions about this during office hours!
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The Key Ingredients

• We start with the notion of a experiment.
Definition

An experiment is a procedure that can be repeated an infinite number oftimes, where each time we repeat the procedure there are a fixed set ofthings (called outcomes) that could occur.

• Some examples:
• Tossing a coin twice
• Rolling a die
• Sampling from a population
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The Key Ingredients

• What happens when we put all of the outcomes associated with a particularexperiment into one giant set?
Definition

The outcome space, denoted with the capital greek letter Ω, is the setconsisting of all outcomes associated with a particular experiment.
• We can also broaden our horizons, and consider things that are slightly morecomplicated than single outcomes:

Definition

An event is a subset of the outcome space. The set of all events associatedwith a particular outcome space (i.e. a set containing subsets of Ω) iscalled the event space, and is denoted by F .
• We won’t talk too much about event spaces in this class, but they are an importantingredient in the concept we have been working our way toward...
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Wait a Minute-

• Before we go any further, notice how there’s been a lot of mention about sets.
• I know sets aren’t always covered in great detail in calculus, but they are acrucial ingredient in probability (as we are starting to see!)• As such, I’d like to take a quick detour to talk about some basics of Set Theory.
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Crash Course on Set Theory



Sets

• A set is an unordered collection of objects, called elements.• The elements of a set needn’t be numbers; {red, x ,,} is a perfectly valid set.• What do we mean by “unordered?” It means {1, 2, 3} and {3, 2, 1} are the same set,because they contain precisely the same elements.• To notate the fact that some quantity x is an element of a particular set S , we will usethe notation x ∈ S .
• How can we “compare” sets?• One idea is to look at the number of elements in a set: we define, loosely speaking, the

cardinality of a set A (notated |A|, or #(A)) to be the number of elements in a set.• The notion of cardinality becomes a bit trickier when there are an infinite number ofelements in our set... We’ll cross that bridge when we come to it, though!
• Ok, what about this situation: A = {1, 2, 3, 4} and B = {2, 3}. Clearly B is “inside” A!This brings us to the notion of subsets: we say a set B is a subset of a set A (notated

B ⊆ A) if every element of B is also an element of A.
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Sets

• We have a few so-called set operations:• Union: A ∪ B := {x : x ∈ A or x ∈ B}• Intersection: A ∩ B := {x : x ∈ A and x ∈ B}. Sometimes notated AB .• Complement: A∁ := {x : x /∈ A}• Set Difference: A \ B := {x : x ∈ A and x /∈ B}

• A note on complements: strictly speaking, complements can only be defined inthe context of some larger set to which A belongs, called the universe of
discourse. Thankfully, in the context of probability, we will almost always beworking inside of the outcome space, so this point won’t really be an issue.

• One other special quantity is that of the empty set: the empty set (notated ∅) isthe set containing no elements.
• As a concrete illustration of some of these set operations: let A = {1, 2, 3, 4} and

B = {4, 5}. Then:• A ∪ B = {1, 2, 3, 4, 5}• A ∩ B = {4}
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Venn Diagrams

• A very useful tool in visualizing sets and set relation is that of the Venn Diagram.
A B

• What set is this?
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Deriving New Identities

• Venn Diagrams are especially useful in deriving new relationships between sets!• For example, how might we compute |A ∪ B|?• Here is the set we’re interested in:
A B

• Näıvely, we may say |A ∪ B| = |A| + |B|:
A B + A B

• But, we’ve overcounted! By how much? |A ∩ B|.
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The Addition Rule

• Pictorially,
A B = A B + A B − A B

• Mathematically,
|A ∪ B| = |A| + |B| − |A ∩ B| (1)

which is sometimes known as the Addition Rule.
• Let me stress: subtracting off |A∩B| does NOT mean that A∪B translates to “either Aor B but not both”; that is something known as an exclusive or (or symmetric

difference). Rather, subtracting |A ∩ B| is only a means of accounting for ourovercounting!
• This generalizes to something called the Inclusion-Exclusion Rule, which we willdiscuss later.
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Back to Probability



Probability

• Wait- I thought we were in a Probability class, not a Set Theory Class!• Ok ok, fair enough... let’s talk about Probability!• Colloquially, Probability represents our beliefs on something; specifically, on aparticular event.• E.g. “chance of rain; odds of winning big at a Casino, etc.”• Mathematically, what this means is that “Probability” takes an event, and spitsout a percent (or fraction).• Sounds like a function!
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Probability Measures

Definition: Probability Measure

A probability measure associated with a particular experiment with outcomespace Ω and event space F is a function
P : F → R

that satisfies three conditions:1. (∀A ∈ F )[P(A) ≥ 0]2. P(Ω) = 13. For a sequence of pairwise disjoint events A1,A2, · · · , [i.e. Ai ∩ Aj = ∅for any i ̸= j ], we have
P

(
n⋃

i=1

Ai

) = n∑
i=1

P(Ai )
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Probability Measures

• Conditions (1) through (3) on the previous page are often referred to as the
Axioms of Probability. The third Axiom is sometimes called the countable
additivity of probability.• Let’s unpack these a bit.• (1) says that we want the probability of any event to be nonnegative; i.e. we arerestricting ourselves from saying things like “the chance of rain is −25%”.• (2) says that the probability of something happening is 100%.• (3) relates to something known as a partition.
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Partitions

Definition: Partition

A sequence of sets {A1,A2, · · · } is said to partition (or form a partition of) alarger set A if1. {Ai}∞
i=1 are pairwise disjoint [i.e. Ai ∩ Aj = ∅ for any i ̸= j ]2. A = ⋃∞

i=1 Ai

A3

A1

A2
A4

A5

A6
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Partitions

• Note that, given an event B that is a subset of a particular outcome space Ω,
{B,B∁} forms a partition of Ω.

Figure 1: Source:https://www.facebook.com/DeepDankNormalMemes/photos/a.178127369397037/1029990050877427/Probability Crash Course on Set Theory Back to Probability Counting/Combinatorics20



Countable Additivity

• Back to the countable additivity of probability.

A3

A1

A2
A4

A5

A6

• What the third axiom says is this: if we sum up the probabilities of the Ai ’s, weshould get the probability of their union.
• Seems intuitive enough, right?
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Probability Space

Definition: Probability Space

Consider an experiment with:• Outcome Space Ω• Event Space F• Probability Measure PThen the object (Ω, F,P) is called a Probability Space.
• Note that a probability space is justa collection of three objects: twocollections of sets, and one function!
• If you go onto more advancedprobability, you’ll talk more aboutthe mechanics of Probability Spaces.But, for the purposes of this class,you don’t need to know much abouttheir intricacies!
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Deriving Probabilistic Identities

Theorem: Complement Rule

Given a probability space (Ω, F,P) and an event A ∈ F , we have
P(A∁) = 1 −P(A)

Proof.

• {A,A∁} forms a partition of Ω.• Therefore, by the Third Axiom of Probability,
P(A ∪ A∁) = P(A) +P(A∁)

• But, A ∪ A∁ = Ω, and by the Second Axiom of Probability, P(Ω) = 1.• Hence, putting these points together, we find
P(A ∪ A∁) = P(Ω) = 1 = P(A) +P(A∁)

• Rearranging terms yields the desired result.
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Deriving Probabilistic Identities

Theorem: Set Difference Rule

Given a probability space (Ω, F,P) and an event A ∈ F , we have
P(A \ B) = P(A) −P(A ∩ B)

Proof.• {(A \ B), (A ∩ B)} forms a partition of A. (Sketch a Picture!)• Therefore, by the Third Axiom of Probability,
P([A \ B ] ∪ [A ∩ B ]) = P(A \ B) +P(A ∩ B)

• But, [A \ B ] ∪ [A ∩ B ] = A.• Hence, putting these points together, we find
P([A \ B ] ∪ [A ∩ B ]) = P(A) = P(A \ B) +P(A ∩ B)

• Rearranging terms yields the desired result.
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Deriving Probabilistic Identities

Theorem: The Addition Rule

Given a probability space (Ω, F,P) and two events A,B ∈ F , we have
P(A ∪ B) = P(A) +P(B) −P(A ∩ B)

Proof.• {(A \ B), (A ∩ B), (B \ A)} forms a partition of (A ∪ B).• Therefore, by the Third Axiom of Probability,
P([A \ B ] ∪ [A ∩ B ] ∪ [B \ A]) = P(A \ B) +P(A ∩ B) +P(B \ A)

• But, [A \ B ] ∪ [A ∩ B ] ∪ [B \ A] = (A ∪ B).• Hence, putting these points together, we find
P(A ∪ B) = P(A \ B) +P(A ∩ B) +P(B \ A)= [P(A) −����P(A ∩ B) ] +����P(A ∩ B) + [P(B) −P(A ∩ B)]= P(A) +P(B) −P(A ∩ B)
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Equally Likely Outcomes

• So far, we’ve been dealing only with abstract probability measures. What aresome concrete examples of probability measures?• Here’s one, that goes by many names: we’ll call it the Classical Definition of
Probability, but sometimes it is called the equally likely probability measure:

Definition: Classical Definition of Probability

Consider an outcome space Ω with n elements. Then, the probabilitymeasure defined by
P(A) = |A|

nis a valid probability measure.
• Why the name? This is the probability measures that arises from experiments inwhich outcomes are all equally likely.• For instance: rolling a fair die, flipping a fair coin, drawing a number at random from aset of numbers, etc.• You can verify that this satisfies the three axioms of probability.
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Equally Likely Outcomes

Example 1: Suppose I toss a fair coin once.
• Let H denote “the coin landed heads” and T denote “the coin landed tails.”• Ω = {H,T}• Because the coin is fair, we can assume equally likely outcomes. That is,

P(H) = 1

2
; P(T ) = 1

2

• Note that we could have written H∁ in place of T .
• Kind of boring...
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Equally Likely Outcomes

Example 2: Suppose I toss a fair coin twice.
• Let H denote “the coin landed heads” and T denote “the coin landed tails.”• Ω = {H,T}2 = {(x , y ) : x ∈ {H,T}, y ∈ {H,T}}• Because the coin is fair, we can assume equally likely outcomes. That is,

P((x , y )) = 1

4
∀(x , y ) ∈ Ω

• Let A denote the event “I observed at least one heads.”• A = {(H,H), (H,T ), (T ,H)}
• So P(A) = |{(H,H)(H,T ),(T ,H)}|

4 = 3

4
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Equally Likely Outcomes

• Easier way to get P(A)? Yes!• Note that A∁ means “I observed no heads”, so
A∁ = {(T ,T )}

and
P(A∁) = |{(T ,T )}|

4
= 1

4meaning, by the complement rule,
P(A) = 1 −P(A∁) = 1 − 1

4
= 3

4
✓

• Moral: Always check to see if the probability of the complement is easier tocompute!
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Equally Likely Outcomes

• In addition to our event A from before, now let B denote the event “I observed atleast one Tails.” Suppose we wish to compute P(A ∪ B).• We immediately see
P(A) = 3

4

P(B) = |{(H,T ), (T ,H), (T ,T )}|
4

= 3

4• Additionally, A ∩ B denotes “I observed at least one heads and at least one tails”.• Mathematically,
A ∩ B = {(H,T ), (T ,H)}and so

P(A ∩ B) = |{(H,T ), (T ,H)}|
4

= 1

2• Therefore, by the Addition Rule,
P(A ∪ B) = P(A) +P(B) −P(A ∩ B) = 3

4
+ 3

4
− 1

2
= 1
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Equally Likely Outcomes

• Easier way? Yup!• Note (A ∪ B)∁ means “no heads and no tails.” But this is impossible! Therefore,
P([A ∪ B ]∁) = 0, and so P(A ∪ B) = 1 − 0 = 1.

• In fact, there are two set-theory formulas I didn’t mention before that could beuseful:
Theorem: DeMorgan’s Laws

Given two sets A and B , we have
• (A ∪ B)∁ = A∁ ∩ B∁ • (A ∩ B)∁ = A∁ ∪ B∁

More generally, for a sequence of events {Ai}∞
i=1, we have

• ( ∞⋃
i=1

Ai

)∁ = ∞⋂
i=1

A∁
i • ( ∞⋂

i=1

Ai

)∁ = ∞⋃
i=1

A∁
i
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A Note on Outcome Spaces

• Could I have written the outcome space as {0, 1}2? Sure!?• OK, in words, what does the outcome (0, 1) mean?• That’s right- we don’t really know!• Because we were not clear and explicit about our notation.• If I say “let 0 denote ’tails’ and 1 denote ’heads’ ”, then the above is a perfectly validoutcome space. (Same if we reversed the roles of 0 and 1)
• Moral of the Story: outcome spaces are not unique; they are inherently linkedwith our notation. As such, it is important to be clear and explicit about ournotation.
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Try it Yourself!

Example 3: Suppose I roll two fair six-sided dice.
(a) Write down a potential outcome space associated with this experiment. (Beexplicit about your notation!)(b) Can we use the equally likely probability measure here?(c) Let A denote the event “the maximum of the two numbers is 3” and B denote “thesum of the two rolls was 4”. Compute P(A ∪ B)
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Leadup to our Next Topic...

• The Equally Likely probability measure is very useful!• But, note that the probability of an event really only depend on the number ofelements in that event.• Up until now, we’ve been finding that number by explicitly listing out theelements in our event and then counting them up.• Wouldn’t it be nice if there is a way to systematically count the elements in a set,without having to list out all of the elements?
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Counting

• The field of counting (and
combinatorics) is primarilyconcerned with systematicallycounting the elements in a set/event,without having to explicitlyenumerate all of the elements in thatset.
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Fundamental Principle of Counting

Theorem: Fundamental Principle of Counting

If an experiment consists of k independent stages, and the i th stage has a totalof ni configurations, then the total number of configurations in the experimentis
k∏

i=1

ni := n1 × n2 × · · · × nk

• Simple Example: Suppose that at a particular ice cream shop, a “scoop” consistsof one flavor and one topping. If there are 32 flavors and 8 toppings available,how many scoops can be created?• 32 × 8 = 256.
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The Slot Method

• When utilizing the Fundamental Principle of Counting (FPC), a usefuldiagrammatic tool is that of the slot method. Here’s how it works:1. Write down k blank lines (“slots”), where k is the number of stages in the experiment.2. In the i th slot, write down ni , the number of configurations corresponding to that stage.3. Finally, multiply across the slots to find the total number of configurations.
• Let’s apply this to the ice cream example:

32 × 8

• What if we say that a scoop also consists of a drizzle, and there are 4 drizzlesavailable?
32 × 8 × 4
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Reorderings

• Suppose I have n tickets, numbered 1 through n, in front of me. How many waysare there to arrange these n tickes in a line?• Let’s use the slot method. I will draw n slots, where each slot corresponds to aticket:
n × n − 1 × · · · × 3 × 2 × 1

• This type of quantity arises so often, we give it a name:
Definition: Factorial

For a natural number n ∈ N, we define the quantity n! (read, “n factorial”)to be
n × (n − 1) × · · · × 3 × 2 × 1We definitionally set 0! = 1.

• 3! = 3 × 2 × 1 = 6• 4! = 4 × 3 × 2 × 1 = 24• 5! = 5 × 4 × 3 × 2 × 1 = 120
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Picking Objects

• Now, let’s consider a very simple example. Suppose I have a box with threetickets: one labelled A, one labelled B , and one labelled C .• From this box, I will pick two tickets, not replacing the ticket I selected first.• This is an experiment! So, it musth have an outcome space. My question is: how
many elements are in the outcome space?

• Before we answer this question, we need a bit more information. Specifically, weneed to know: does order matter?• OK, what does it mean for “order to matter?”• Think about a license plate: the plates 123ABC and 312BCA are clearly twodifferent license plate, despite the fact that they are comprised of the sameletters and numbers!
• In the context of this problem, asking whether or not order matters equates toasking ourselves “is picking A followed by B different than picking B followed by

A?”
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Order Matters

• Let’s suppose order does matter.• Then, letting (X ,Y ) denote the outcome “I drew the ticket labelled X first, thenthe ticket labelled Y second” (for X ∈ {A,B,C} and Y ∈ {A,B,C}), then
Ω = {(A,B), (A,C )(B,A), (B,C )(C ,A), (C ,B)}

• Why didn’t I include outcomes like (A,A)?• Because I’m not replacing my first ticket! Thus, if I drew the ticket A first, it isimpossible for me to draw it again (because after I drew it, I didn’t put it back into thebox!)
• Therefore, the answer to “how many elements are in the outcome space” is 6.
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Order Matters

• So, we answered the question by listing out all of the elements in Ω.• But I thought the whole point of Counting was to enable us to answer thisquestion without enumerating the elements in the outcome space!• You’re right- let’s find a more systematic way to answer this question.• Surprisingly, that systematic way is.... the slot method!
• Perhaps that’s not so surprising. Our experiment consists of 2 stages (the twotickets we draw); thus, let’s draw 2 slots:
• For the first stage, there are 3 possibilities (either ticket A, ticket B , or ticket C );thus we put a 3 in the first slot:

3• Once we pick a ticket, there are now only 3 − 1 = 2 tickets left in the box.Therefore, we put a 2 in our final slot:
3 2

• Multiply together (by the FPC) to find the answer is
3 × 2
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Order Matters

• Let’s try a slightly more complicated example. Suppose now that I have 5 tickets,labeled A through E , and I now want to draw 3. How many ways are there to dothis?• We draw 3 slots, one for each of the tickets:
• Now, there are 4 tickets in the box on our first draw, and 4 − 1 = 3 tickets left onour second, and 3 − 1 = 2 on our third. Thus:

5 × 4 × 3

so there are 5 × 4 × 3 = 60 possible ways to select 3 tickets from a total of 4without replacement, when order matters.
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Order Matters

• Don’t believe me?
Ω = {(A,B,C ), (A,B,D), (A,B,E ), (A,C ,B), (A,C ,D), (A,C ,E ), (A,D,B), (A,D,C ), (A,D,E ), (A,E ,B), (A,E ,C ), (A,E ,D),(B,A,C ), (B,A,D), (B,A,E ), (B,C ,A), (B,C ,D), (B,C ,E ), (B,D,A), (B,D,C ), (B,D,E ), (B,E ,A), (B,E ,C ), (B,E ,D),(C ,A,B), (C ,A,D), (C ,A,E ), (C ,B,A), (C ,B,D), (C ,B,E ), (C ,D,A), (C ,D,B), (C ,D,E ), (C ,E ,A), (C ,E ,B), (C ,E ,D),(D,A,B), (D,A,C ), (D,A,E ), (D,B,A), (D,B,C ), (D,B,E ), (D,C ,A), (D,C ,B), (D,C ,E ), (D,E ,A), (D,E ,B), (D,E ,C ),(E ,A,B), (E ,A,C ), (E ,A,D), (E ,B,A), (E ,B,C ), (E ,B,D), (E ,C ,A), (E ,C ,B), (E ,C ,D), (E ,D,A), (E ,D,B), (E ,D,C )}
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Order Matters

• Finally, let’s generalize this!• Suppose we have n tickets (for some fixed n ∈ N), and we wish to draw k (where
k ∈ N and k ≤ n) without replacement (i.e. we don’t replace tickets in betweendraws). If order matters, how many possible configurations of k−tickets arepossible?• We use the slot method:

n × n − 1 × n − 2 × · · · × n − k + 1

• We can actually write this more concisely using factorials:
n × (n − 1) × · · · × (n − k + 1) = n!(n − k)!This quantity shows up so often, we give it a special notation and name: we callit n order k and denote it (n)k :

(n)k := n!(n − k)! = n × (n − 1) × (n − k + 1)
• Note that (n)n = n!
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Order Matters

• This is consistent with our work from above:• (3)2 = 3!(3 − 2)! = 3!
1! = 3! = 6

• (5)3 = 5!(5 − 3)! = 5!
2! = 5 × 4 × 3 × �2 × �1

�2 × �1
= 5 × 4 × 3 = 60
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Order Doesn’t Matter

• Let’s go back to our 3-ticket example: we have 3 tickets labeled A through C , andwe want to draw 2 without replacement.• When order matters, there are (3)2 = 6 ways of doing this.• What if ordered doesn’t matter? That is, what if the outcomes (A,B) and (B,A)were not counted separately?
• From a enumerative standpoint,

Ω = {(A,B), (A,C ), (B,C )}
so |Ω| = 3. But, again, we want to find a way to count without listing out theelements!
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Order Doesn’t Matter

• Here’s one way to think about where this 3 came from:• Start by supposing order did matter; then there are 6 possibilities.• Now, divide through by the number of ways to reorder 2 elements among themselves.Why is this? Well, once we’ve picked the letters in our sample, all outcomes thatcontain those same letters but just shuffled around will be considered indistinguishable!
• Let’s jump to the general case. If we have n tickets and want to sample k withoutreplacement, where order doesn’t matter, then the total number of ways to dothis is

(n)k
k!

suppose ordermattered

group liketerms
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Order Doesn’t Matter

• This quantity also arises frequently, so we give it a name as well: we call this n
choose k and denote it (nk):(

n

k

) := (n)k
k! =

(
n!(n−k)!)
k! = n!

k! · (n − k)!
• To Summarize: the number of ways to sample k objects from n withoutreplacement is:• (n)k := n(n − k)! if order does matter

• (
n

k

) := n!
k! · (n − k)! if order doesn’t matter
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Sampling With Replacement

• One final assumption we can examine further is that of sampling with or withoutreplacement.• In our example above, I did not replace tickets between each successive draw.What happens if I do replace tickets?• Specifically, consider the following situation: I have n objects, and I want toselect k of them with replacement.• Unsurprisingly, we draw a slot diagram!
n × n × n × · · · × n︸ ︷︷ ︸

k slots• So, the number of ways to select k objects from a total of n with replacement is
nk .

• Let’s put everything together by way of a few example.
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License Plates

California state license plates consist of 7 characters: a digit, followed by 3 letters,followed by 3 digits.
• Suppose we do not allow letters or digits to be repeated; that is, plates like
A122BCC345 are not valid, whereas A123BCD456 is valid. How many license platescan be made according to this labelling scheme?• As mentioned before, the order in which digits appear in a license plate matters.Additionally, since we are assuming repeated digits/letters are not allowed, weare effectively sampling without replacement.• The act of choosing a plate can be decomposed into 7 stages, where the firststage corresponds to picking the initial letter, the second corresponds to pickingthe first digit, and so on and so forth. Therefore, using a slot diagram, we placedown 7 slots:

10 × 26 × 25 × 24 × 9 × 8 × 7

• Therefore, the final answer is 10 · (26)3 · (9)3 = (10)4 · (26)3
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License Plates

California state license plates consist of 7 characters: a digit, followed by 3 letters,followed by 3 digits.
• Admittedly, the license plate labelling scheme in reality doesn’t prohibit repeateddigits/letters; that is, a license plate like A122BCC345 is perfectly valid. In thismore realistic labelling scheme, how many license plates can be created?• Again, order matters. Now, however, we are effectively sampling withreplacement.• Our slot diagram then looks like

10 × 26 × 26 × 26 × 10 × 10 × 10

• Therefore, the final answer is 10 · (26)3 · (10)3 = (10)4 · (26)3

Probability Crash Course on Set Theory Back to Probability Counting/Combinatorics52



Basic Counting Principles:

Selecting k objects from a total of n:
Order of Selection isImportant Order of Selection isUnimportant

Repetitions allowed(w/ replacement) nk
(
n + k − 1

k − 1

)
Repetitions not allowed(w/o replacement) (n)k = n!(n − k)!

(
n

k

) = n!
k!(n − k)!
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One Final Fact

• One fact I forgot to mention explicitly (but one that we used implicitly already!)is the following:
Theorem ∣∣∣∣∣ n×

i=1
Ai

∣∣∣∣∣ = n∏
i=1

|Ai |
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Coin Toss: Chalkboard Exercise

Suppose I roll a fair 4-sided die, and simultaneously toss a fair coin.
(a) How many elements are in the outcome space?(b) Let E denote the event “the coin lands heads.” What is P(E )?(c) What is the probability that the die lands on an even number?(d) What is the probability that either the coin lands heads, or the die lands on aneven number (or both?)

(By the way, we will often admit the “or both” in “or” statements like in part (d) above;that is, if we say “X or Y ” we implicitly mean “X or Y or both”)
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Neat Diagrammatic Trick: Trees

Consider N objects: G of which are “good” and N − G of which are “bad.” In a sampleof n, the probability of observing x “good” is
N

G(Good) N − G(Bad)
x n − x

=⇒
(G
x

)(N−G
n−x

)(N
n

)

Exercise: A box contains 20 marbles: 5 blue, 10 red, and 5 orange. I take a sample ofsize 5; what is the chance that I see 1 blue, 2 red, and 2 orange? (See Chalkboard)
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More in Section!

• You will get some more practice with counting during Discussion Section thisweek, as well as in your first Homework.• I could go on and on about counting! But, so that we don’t get too burnt outduring these first few lectures, I think I will put a pin on counting for now. Wemay need to introduce a few additional counting tricks/techniques throughoutthis course, but hopefully with the basics now mastered these additionaltechniques won’t be anything too jarring!
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