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Where We’ve Been

• Axioms of Probability; Probability Measure P• Probability Space (Ω, F ,P)• Classical Definition of Probability• Probability Rules (e.g. Complement Rule, Set Difference Rule, etc.)
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Conditional Probability



Leadup

• Given an event A, the quantity P(A) represents our beliefs about the event A.• Suppose we get some more information in the form of another event B .• How, if at all, do our beliefs about A Change?
• As an example: suppose we want to estimate the chance of rain. In the absenceof any information, we might say that the chance of rain tomorrow is 50%.• But, we know that it is summer, in Santa Barbara; thus, we intuitively feel thatthe true chance of rain should probably be lower than 50%.
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Conditional Probability

Proposition

Given a probability space (Ω, F ,P) and an event B ∈ F such that P(B) ̸= 0,the probability measure PB : F → R defined by
PB (A) = P(A ∩ B)

P(B)
is a valid probability measure.

• I won’t prove this (instead I’ve made it an extra problem on Worksheet 2!)• Often times, instead of writing PB (A) we will write P(A | B), read “the probabilityof A given B .”
• P(A | B) represents an updating of our beliefs on A, in the presence of B .• Why is this an “updating?” Well, really PB (A) is the proportion of B that is explainedby A.• Sometimes read “if B , then A.”
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Example

Suppose I randomly select a number from the set [|1 : 100|] (this is a shorthandnotation for {1, 2, · · · , 100}). Define the events A and B as follows:
A := {the number I selected was strictly greater than 50}
B := {the number I selected was a multiple of 5}

• Because the selection is done “randomly,” we can use the classical definition ofprobability.• There are 50 numbers greater than 50 (that are in the set [|1 : 100|]), meaning
P(A) = 50/100 = 1/2.• There are 20 multiples of 5 in the set [|1 : 100|], meaning P(B) = 20/100 = 1/5.• Additionally, A ∩ B represents the event “the number I selected was both greaterthan 50 and a multiple of 5.” There are 10 multiples of 5 that are greater than 50;therefore P(A ∩ B) = 10/100 = 1/10.• Thus, putting everything together,

P(A | B) = P(A ∩ B)
P(B) = 1/10

1/5 = 5

10
= 1

2
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Multiplication Rule

• Our notion of conditional probability gives us a way of computing probabilities ofintersections: since
P(A | B) = P(A ∩ B)

P(B)we can multiply both sides by P(B) to obtain:
Formula: The Multiplication Rule

Given a probability space (Ω, F ,P) and two events A,B ∈ F with P(B) ̸= 0,
P(A ∩ B) = P(A | B) ·P(B)

• As an example: if A and B are two events with P(A) = 2/5 and P(B | A) = 1/4,then P(A ∩ B) = P(B | A) ·P(A) = (1/4)(2/5) = 1/10
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Example

A recent survey at the Isla Vista Co-Op revealed that 50% of customers buy bread. Ofthose customers who buy bread, 20% buy cheese.
• Always define notation first! Let B denote “customer buys bread” and C denote“customer buys cheese.” Then the problm tells us

P(B) = 0.5; P(C | B) = 0.2

• We seek P(B ∩ C ). Since P(B ∩ C ) = P(C | B) ·P(B), we conclude that theproportion of customers who buy bread and cheese is
(0.2) · (0.5) = 10%
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Partitions (Again?)

• Now that we have the multiplication rule, we can derive a very useful formula.• Consider a probability space (Ω, F ,P) and an event A ∈ F .• Consider another event B ∈ F , and say we want to compute P(A).• It is either the case that A happened along with B , or it happened along withnot-B . That is,
A = [A ∩ B ] ∪ [A ∩ B∁]• Taking the probability of both sides, and invoking the third axiom of probability,we find

P(A) = P(A ∩ B) +P(A ∩ B∁)
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Partitions (Again?)

• Let’s generalize this further. Suppose we have a partition {Bi}∞
i=1 of Ω. Then:• Either A happened along with B1 ,• ... or B2 ,• ... or B3 ,• and so on and so forth.• Therefore,

A = ∞⋃
i=1

(A ∩ Bi )
and, taking the probability of both sides,

P(A) = ∞∑
i=1

P(A ∩ Bi )
• Since P(A ∩ Bi ) = P(A | Bi ) ·P(Bi ), we can rewrite this as:

Formula: The Law of Total Probability

P(A) = ∞∑
i=1

P(A | Bi ) ·P(Bi )
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Leadup

• Let’s go back to our definition of conditional probability:
P(A | B) = P(A ∩ B)

P(B)
• Note that P(A ∩ B) = P(B ∩ A).• By the multiplication rule, P(B ∩ A) = P(B | A) ·P(A).• Hence, we have derived the following result:

Formula: Bayes’ Theorem

P(A | B) = P(B | A)P(A)
P(B)

• Colloquially, Bayes’ Rule gives us a way of “reversing the order” of a conditional.This is especially useful when we have some sort of temporality.• Oftentimes, we will use the Law of Total Probability in the denominator of Bayes’Rule.
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Example: On the Chalkboard

In Gauchoville, motherboards are manufactured by three companies (called A, B , and
C ). 20% of motherboards manufactured in factory A are defective; 30% of thosemanufactured in factory B are defective, and 10% of those manufactured in factory Care defective. Additionally, Factory A is responsible for 10% of the motherboards soldin Gauchoville, B is responsible for 50%, and C is responsible for the remaining 40%.
(a) If a motherboard is selected at random, what is the probability that it is defective?(b) Suppose that a randomly selected board was defective. What is the probabilitythat it came from factory A?
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The Multiplication Rule, Generalized

Formula: Multiplication Rule for n events

If A1, · · · ,An are events (and all of the conditional probabilities below are well-defined), we have
P

(
n⋂

i=1

Ai

) = P(A1)×P(A2 | A1)×P(A3 | A1∩A2)×· · ·×P(An | A1,A2, · · · ,An−1)
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Example (2.7 from ASV)

Suppose an urn contains 8 red balls and 4 white balls. Draw four balls at random,without replacement; what is the probability that the first two draws are red and thethird and fourth draws are white?
• Define

Ri := i th ball was red; Wi := i th ball was whiteso that the quantity we seek can be written as
P(R1 ∩ R2 ∩ W3 ∩ W4)

• By the multiplication rule,
P(R1 ∩ R2 ∩ W3 ∩ W4) = P(R1) ×P(R2 | R1) ×P(W3 | R1 ∩ R2) ×P(W4 | R1 ∩ R2 ∩ R3)
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Example (2.7 from ASV)

Suppose an urn contains 8 red balls and 4 white balls. Draw four balls withoutreplacement; what is the probability that the first two draws are red and the third andfourth draws are white?
• P(R1) = 8

12 , since there are initially 12 balls of which 8 are red (note that weused the classical definition of probability here, since our selection was done “atrandom”)• P(R2 | R1) denotes the probability of drawing a red ball second, after havingdrawn a red ball first. Since we drew a red ball first, there are only 11 ballsremaining of which 7 are red; hence P(R2 | R1) = 7
11 .• P(W3 | R1 ∩ R2) denotes the probability of drawing a white ball third, afterhaving drawn a red ball first and another red ball second. Since we have alreadydrawn two balls, both of which were red, we have a total of 10 marbles of which 4are white; hence P(W3 | R1 ∩ R2) = 4

10• P(W4 | R1 ∩ R2 ∩ W3) denotes the probability of drawing a white ball fourth, afterhaving drawn a red ball first followed by another red ball followed by a white ball.There are 9 balls remaining of which 3 are white; hence P(W4 | R1 ∩R2 ∩R3) = 3
9• Hence, putting everything together,

P(R1 ∩ R2 ∩ W3 ∩ W4) = 8

12
× 7

11
× 4

10
× 3

9
= 28

495
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Independence



Leadup

• Recall that P(A) represents our beliefs on an event A.• Additionally, P(A | B) represents our updated beliefs on A, in the presence of B .• What if P(A | B) = P(A)? In other words, our beliefs about A are completelyunchanged by B .• That is, A and B are unaffected by each other... they are independent of eachother!
Definition: Independence

Given a probability space (Ω, F ,P) and two events A,B ∈ F , we say that Aand B are independent (notated A ⊥ B) if P(A | B) = P(A), or, equivalently,if P(B | A) = P(B).
An equivalent condition for independence is P(A ∩ B) = P(A) ·P(B).
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Example

Suppose A and B are events with P(A) = 0.2, P(B) = 0.3, and P(A ∩ B) = 0.1. Are Aand B independent?
• No, because P(A ∩ B) = 0.1 ̸= 0.2 · 0.3 = P(A) ·P(B)
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Independence of Multiple Events

Definition: Independence of n Events

We say that a sequence of events A1, . . . ,An are independent (or mutually
independent) if, for every subsequence Ai1 , . . . ,Aik , with 2 ≤ k ≤ n and 1 ≤
i1 < i1 < · · · < ik ≤ n, we have

P(Ai1 ∩ · · · ∩ Aik ) = P(Ai1 ) × · · · ×P(Aik )
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Independence of 4 events:

• P(A ∩ B) = P(A) ·P(B)• P(A ∩ C ) = P(A) ·P(C )• P(A ∩ D) = P(A) ·P(D)• P(B ∩ C ) = P(B) ·P(C )• P(B ∩ D) = P(B) ·P(D)• P(C ∩ D) = P(C ) ·P(D)
two-way intersections

• P(A ∩ B ∩ C ) = P(A) ·P(B) ·P(C )• P(A ∩ B ∩ D) = P(A) ·P(B) ·P(D)• P(A ∩ C ∩ D) = P(A) ·P(C ) ·P(D)• P(B ∩ C ∩ D) = P(B) ·P(C ) ·P(D)
• P(A ∩ B ∩ C ∩ D) = P(A) ·P(B) ·P(C ) ·P(D)

three-way intersections

four-way intersections
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Example

Suppose I toss a fair coin three times, and I define Gi to be the event “the i th tosslanded tails” (for i = 1, 2, 3).
Show that G1,G2, and G3 are independent.
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Extensions/Modifications of
Independence



Pairwise Independence

• Independence is a very strong condition!• There exists a weaker form of independence:
Definition: Pairwise Independence

A sequence of events A1,A2, · · · is said to be pairwise independent if Ai ⊥ Ajfor any i ̸= j .
• Note that independence implied pairwise independence, but not vice-versa.
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Example

Suppose (again) I toss a fair coin three times, and define events
A := {I observe exactly one tails among the first two coinflips}
B := {I observe exactly one tails among the last two coinflips}
C := {I observe exactly one tails among the first and third coinflip}

Are A,B,C independent? Are they pairwise independent?
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Conditional Independence

• At the beginning of this lecture, we defined a new probability measure; that ofconditional probability. It makes sense to posit a notion of independence thatutilizes the conditional probability measure:
Definition: Conditional Independence

Let A1, · · · ,An be events and B be an event with P(B) ̸= 0. Then we saythat the events A1, · · · ,An are conditionally independent, given B , if for any
k ∈ {2, · · · , k} and 1 ≤ i1 < i2 < · · · < ik ≤ n

P(Ai1 ∩ · · · ∩ Aik | B) = P(Ai1 | B) × · · · ×P(Aik | B)
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Example (ASV 2.38)

Suppose 90% of coins in circulation are fair and 10% are biased coins that give tailswith probability 3/5. I have a random coin and I flip it twice. Denote by A1 the eventthat the first flip yields tails and by A2 the event that the second flip yields tails.
• Let F denote “coin is fair” and B denote “coin is biased.”• It seems reasonable enough to assume that for a given coin the probability oftails does not change between the first and second flip. In other words,

P(A1 | F ) = P(A2 | F ) = 1

2
; P(A1 | B) = P(A2 | B) = 3

5• Then, by the Law of Total Probability,
P(Ai ) = P(Ai | F )P(F ) +P(Ai | B)P(B) = 1

2
· 9

10
+ 3

4
· 1

10
= 51

100for i = 1, 2
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Example (ASV 2.38)

Suppose 90% of coins in circulation are fair and 10% are biased coins that give tailswith probability 3/5. I have a random coin and I flip it twice. Denote by A1 the eventthat the first flip yields tails and by A2 the event that the second flip yields tails.
• It also seems reasonable enough to assume that successive flips of a given coinare independent. In other words, we assume we have conditional independence:

P(A1 ∩ A2 | F ) = P(A1 | F )P(A2 | F ); P(A1 ∩ A2 | B) = P(A1 | B)P(A2 | B)
• Hence, by the Law of Total Probability,

P(A1 ∩ A2) = P(A1 ∩ A2 | F )P(F ) +P(A1 ∩ A2 | B)P(B)= P(A1 | F )P(A2 | F )P(F ) +P(A1 | B)P(A2 | B)P(B)
= 1

2
· 1
2

· 9

10
+ 3

5
· 3
5

· 1

10
= 261

1000
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Example (ASV 2.38)

Suppose 90% of coins in circulation are fair and 10% are biased coins that give tailswith probability 3/5. I have a random coin and I flip it twice. Denote by A1 the eventthat the first flip yields tails and by A2 the event that the second flip yields tails.
• So, we have

P(A1) ×P(A2) = ( 51

100

)2

P(A1 ∩ A2) = 261

1000which shows that A1 and A2 are not independent, despite the fact that they are(by our construction) conditionally independent given the fairness or biasednessof the coin.• Intuitively, this is because the first flip gives us information about the coin wehold (i.e. with regards to whether or not it is fair). This information will clearlyalter our believes about the second flip.
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The “Other Direction”

• In our previous example, we saw that two conditionally independent events maynot be mutually independent.• Unsurprisingly, this shows that we can sometimes “inject” independence byconditioning!• In other words, we can start out with two dependent events, but find a specificevent B . such that we have conditional independent given B .• If you’re curious, I direct you to Example 2.40 from ASV [I’ll try and post a copy ofthis example online shortly]
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