3: Random Variables and Distributions, Part I PSTAT 120A: Summer 2022

Ethan P. Marzban
June 27, 2022

University of California, Santa Barbara

Where We've Been

- Axioms of Probability, Probability Spaces, Counting
- Conditional Probabilities, independence, etc.

Random Variables

Leadup

- Let's consider again the experiment of tossing a coin twice.
- We saw previously that one possible outcome space is $\Omega=\{H, T\}^{2}=$ $\{(H, H),(H, T),(T, H),(T, T)\}$
- Suppose I am only interested in the number of heads I observed, not the actual configuration of heads and tails.
- In other words, I seek some summarizing quantity; specifically, one that takes an outcome and spits out the number of heads.

- Hm, takes in an element and spits out a number...
- Smells like a function!

Random Variables

Definition: Random Variable

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a random variable is a function that maps from Ω to \mathbb{R}. Oftentimes we use capital letters to denote random variables; for example,

$$
X: \Omega \rightarrow \mathbb{R}
$$

- So, in our coin tossing example, let X denote the number of heads in my two coin tosses. Then:

$$
X((H, H))=2 ; \quad X((H, T))=1 ; \quad X((T, H))=1 ; \quad X((T, T))=0
$$

- Or, equivalently, $(H, H) \mapsto 2 ; \quad(H, T) \mapsto 1 ; \quad(T, H) \mapsto 1 ; \quad(T, T) \mapsto 0$

State Space

Definition: State Space (Support)

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a random variable $X: \Omega \mapsto \mathbb{R}$, we define the state space (sometimes called the support) of X to be the image of Ω. In other words, letting S_{X} denote the state space of X, we have

$$
S_{X}:=X(\Omega)=\{y \in \mathbb{R}: y=X(\omega) \text { for some } \omega \in \Omega\}
$$

- So, in our coin tossing example where X denotes the number of heads observed, then $S_{X}=\{0,1,2\}$.

Classification of Random Variables

- We classify random variables based on their state space.

Definition: Discrete/Continuous Random Variables

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a random variable $X: \Omega \rightarrow \mathbb{R}$, we say X is a discrete random variable (or just " X is discrete") if its state space is at most countable; otherwise we say X is a continuous random variable (or just " X is continuous").

Countable vs. Uncountable

- OK, so I guess it's time to finally address the "countable vs. uncountable" issue.
- Here is how I like to (intuitively) think about things. Clearly, both \mathbb{Z} and \mathbb{R} have an infinite number of elements.
- However, in the sense of subsets, \mathbb{R} is "bigger" than \mathbb{Z} (remember when we talked about comparing sets?) Therefore, it makes sense that \mathbb{R} should be "bigger" than \mathbb{Z} in the sense of cardinality as well.
- Additionally, between any two integers are an infinite number of real numbers!
- So, either way we cut it, it seems like the cardinality of \mathbb{R} should be larger than that of \mathbb{Z}.
- This is why we say \mathbb{Z} is countably infinite, whereas \mathbb{R} is uncountably infinite.
- Intervals (closed, open, or half-open/half-closed) are also uncountably infinite.
- There is a way to make the notion of countable vs. uncountable more rigorous (and you do so in classes like MATH 8 or PSTAT 8), but we won't worry about that level of distinction for this class.

Discrete vs. Continuous

- Returning to our coin tossing example where X denotes the number of heads I observed- we saw that $S_{X}=\{0,1,2\}$ meaning X is discrete.
- Suppose I break a stick of length 1 into two smaller pieces by picking a breakpoint at random along the length of the stick. If L denotes the length of the shorter piece, then $S_{L}=[0,1 / 2]$ which shows that L is continuous.
- We will focus on Discrete Random Variables for now; then we'll turn our attention to continuous ones.

Discrete Random Variables

Leadup

- Note that our discussion thus far has been devoid of any mention of \mathbb{P} (at least, beyond the notion of a probability space).
- Let's incorporate probabilities into the mix.

Definition: Probability Mass Function (P.M.F.)

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a random variable X, we define the probability mass function (or p.m.f., for short) as

$$
p_{X}(k):=\mathbb{P}(X=k)
$$

for all values of $k \in \mathbb{R}$. Note that the $p_{X}(k)$ is nonzero only when $k \in S_{X}$, but $p_{X}(k)$ should be defined over the entire real line.

PMF

- Let's return to our coin tossing example: recall that

$$
X((H, H))=2 ; \quad X((H, T))=1 ; \quad X((T, H))=1 ; \quad X((T, T))=0
$$

- Now, suppose the coin were fair; then we could utilize the classical definition of probability to construct the p.m.f. of X :

$$
p_{X}(k)= \begin{cases}1 / 4 & \text { if } k=0 \\ 1 / 2 & \text { if } k=1 \\ 1 / 4 & \text { if } k=2 \\ 0 & \text { otherwise }\end{cases}
$$

- Now, I have glossed over something which we should perhaps examine a little more closely: what does $\mathbb{P}(X=k)$ really mean?
- That is, \mathbb{P} only acts on events, so what does the event $\{X=k\}$ mean?
- Well, when we write $\{X=k\}$ we really mean "the set of all outcomes $\omega \in \Omega$ that get mapped to k, under X." In other words:

$$
\{X=k\}:=\{\omega \in \Omega: X(\omega)=k\}
$$

- In fact, we can generalize this notation even further: for a set $B \subseteq \mathbb{R}$, we write

$$
\{X \in B\}:=\{\omega \in \Omega: X(\omega) \in B\}
$$

For instance, we will write

$$
\{X \leq k\}:=\{\omega \in \Omega: X(\omega) \leq k\}
$$

- So, for example, in our coin tossing problem,

$$
p_{X}(1)=\mathbb{P}(X=1)=\mathbb{P}(\{(H, T),(T, H)\})=\frac{|\{(H, T),(T, H)\}|}{4}=\frac{2}{4}=\frac{1}{2}
$$

- By the way, we can also express PMF's in tabular format:

\boldsymbol{k}	0	1	2
$\boldsymbol{p}_{X}(\boldsymbol{k})$	$1 / 4$	$1 / 2$	$1 / 4$

- Sometimes, we can get lucky and even write our p.m.f. as a (somewhat) closed-form expression:

$$
p_{X}(k)= \begin{cases}\binom{2}{k}\left(\frac{1}{2}\right)^{2} & \text { if } k=0,1,2 \\ 0 & \text { otherwise }\end{cases}
$$

- So, to reiterate: the p.m.f. represents all the possible values a random variable can take, and the probability with which the random variable attains those values.
- P.M.F's can be expressed in three possible ways: using a piecewise-defined function, using a table, or, sometimes, using a closed-form expression (with a " 0 otherwise" case)

PMF

- We have a set of tools we can use to verify whether or not a specified function is in fact the p.m.f. of a random variable.

Theorem: Verifying that a Function is a PMF
Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and a function $p_{X}: \mathbb{R} \rightarrow \mathbb{R}$. If p_{X} satisfies the following two conditions:
(1) Nonnegativity: $p_{X}(k) \geq 0$ for all $k \in \mathbb{R}$
(2) Summing to Unity: $\sum_{k} p_{X}(k)=1$
then p_{X} is the p.m.f. of a random variable.

Example

Show that the function

$$
p_{X}(k)= \begin{cases}\left(\frac{1}{2}\right)^{k} & \text { if } k=1,2, \cdots \\ 0 & \text { otherwise }\end{cases}
$$

is a valid probability mass function.

- First note that $(1 / 2)^{k} \geq 0$ for every $k \in\{1,2, \cdots\}$; therefore condition (1) is satisfied.
- Additionally,

$$
\sum_{k} p_{X}(k)=\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k}=\frac{\left(\frac{1}{2}\right)}{1-\left(\frac{1}{2}\right)}=1 \checkmark
$$

Therefore condition (2) is satisfied.

- Thus, since both conditions are satisfied, $p_{X}(k)$ is the p.m.f. of a random variable.
- You need to check both conditions! It's not enough to just say "sums to unity;" you also need to check nonnegativity.

Probabilities from PMF's

- Once we have a p.m.f. of a random variable, we can compute probabilities by summing up values of the p.m.f.:

Theorem: Probabilities from PMF's

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a random variable X with p.m.f. $p_{X}(k)$, we have

$$
\mathbb{P}(X \in B)=\sum_{\{x: x \in B\}} p_{x}(k)
$$

- For example, in our coin tossing example, suppose we want the probability of observing at most 1 heads: then we use

$$
\mathbb{P}(X \leq 1)=\mathbb{P}(X=0)+\mathbb{P}(X=1)=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}
$$

CMF

Definition: CMF

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a random variable X, we define the cumulative mass function (or c.m.f., for short) to be

$$
F_{X}(x):=\mathbb{P}(X \leq k)
$$

- So, on the previous slide, for instance, we found $F_{X}(1)$.

Example (Chalkboard)

On a table, I have three boxes. I know that 2 of the 3 boxes contain a reward of $\$ 100$, but the other box will actually cost me $\$ 100$. Suppose I open two boxes at random (note that once a box is opened it cannot be re-opened). Letting W denote my net winnings, what is the p.m.f. of W ?

Expectation, and Moments

Expectation

Definition: Expected Value

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a discrete random variable X, we define the expected value (or just expectation) of X to be

$$
\mathbb{E}[X]:=\sum_{k} k \cdot p_{X}(k)
$$

- So, for instance, in our coin tossing example

$$
\begin{aligned}
\mathbb{E}[X] & =0 \cdot p_{X}(0)+1 \cdot p_{X}(1)+2 \cdot p_{X}(2) \\
& =0 \cdot \frac{1}{4}+1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}=1
\end{aligned}
$$

- This represents the "average" number of heads.
- Key Point: $\mathbb{E}[X]$ may not be in the state space of X. As an example: consider rolling a fair six-sided die and letting X denote the number that is showing. Then $\mathbb{E}[X]=7 / 2$ (I leave it to you to show this), despite the fact that $S_{X}=\{1,2,3,4,5,6\}$.

Expectation of a Function

Theorem: Law of the Unconscious Statistician (LOTUS)

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a discrete random variable X, we have

$$
\mathbb{E}[g(X)]=\sum_{k} g(k) \cdot p_{X}(k)
$$

- Note that plugging in $g(k)=k$ yields our familiar notion of expectation.
- Additionally, note that this is a theorem; it is not a fact, but rather something that must be proven. (We omit the proof for now).
- Also, you may ask: what does $g(X)$, a function of a random variable mean? Well, we'll discuss this in greater detail in a later lecture. For now, here is some intuition: $g: \mathbb{R} \rightarrow \mathbb{R}$ and $X: \Omega \rightarrow \mathbb{R}$ meaning $(g \circ X): \Omega \rightarrow \mathbb{R}$; that is, $(g \circ X)$ is in fact a random variable!
- Again, more on this in a later lecture.

Moments

Definition: $n^{\text {th }}$ Moment of a Random Variable

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a discrete random variable X, we define the $\boldsymbol{n}^{\text {th }}$ moment of X to be

$$
\mu_{n}:=\mathbb{E}\left[X^{n}\right]=\sum_{k} k^{n} \cdot p_{X}(k)
$$

- Note that $\mathbb{E}[X]$ is simply the first moment of X. For this reason, we often notate $\mathbb{E}[X]$ by μ.

Variance

- Suppose we are interested in a measure of the "spread" of a random variable.
- A sensible measure would be the "average distance from the center." This motivates our definition of variance:

Definition: Variance

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a random variable X, we define the variance of X to be

$$
\operatorname{Var}(X):=\mathbb{E}\left\{[X-\mathbb{E}(X)]^{2}\right\}
$$

It turns out that

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-[\mathbb{E}(X)]^{2}
$$

i.e. the variance of X is equal to the second moment, minus the square of the first moment.

- Sometimes we are interested in the square root of variance; we call this quantity the standard devitaion. In other words,

$$
\mathrm{SD}(X):=\sqrt{\operatorname{Var}(X)}=\sqrt{\mathbb{E}\left\{[X-\mathbb{E}(X)]^{2}\right\}}
$$

Summary

- That's a lot of information, and a lot of terms!
- Let me try and summarize some things.
- We start with the notion of a random variable X, which is a mapping from Ω to \mathbb{R}.
- The state space of X is the image of Ω, under $X: S_{X}:=X(\Omega)$
- The probability mass function (p.m.f.) is a function that takes in a real number k and outputs the probability that $X=k$ (i.e. the probability of the set of all outcomes that get mapped to k, under X)
- A p.m.f. must be nonnegative, and sum to unity.
- The cumulative mass function (c.m.f.) $F_{X}(x)$ at a point x is the sum of $p_{X}(k)$ for which k is at most x.
- The expected value (or expectation) of a random variable gives a measure of an "average" value of X.
- We can compute expectations of functions of random variables (which are, in fact, random variables) using the Law of the Unconscious Statistician.
- The $\boldsymbol{n}^{\text {th }}$ moment of a random variable X is defined to be $\mu_{n}:=\mathbb{E}\left[X^{n}\right]$
- Thus, the first moment is simply the expectation
- The variance of X, a measure of "spread," is related to the second moment of X.

Comprehensive Example

Let X be a random variable with p.m.f. given as below:

$$
\begin{array}{r|ccc}
\boldsymbol{k} & -1 & 1 & 2 \\
\hline \boldsymbol{p}_{X}(\boldsymbol{k}) & 2 / 5 & 1 / 4 & 7 / 20
\end{array}
$$

(a) Find $\mathbb{E}[X]$
(b) Find $\mathbb{E}\left[X^{2}\right]$
(c) Find $F_{X}(x)$, the c.m.f. of X.

CMF's, again

- There is something you might notice about the c.m.f. of X in the previous example: it is a step function.
- This is in fact true of all discrete random variables: in other words:

Fact: C.M.F.'s

The c.m.f. of a discrete random variable X is a step function, with points of discontinuity corresponding to the points in the state space of X and with the magnitudes of the jump discontinuities corresponding to the values of the p.m.f. of X.

Example

Suppose X is a random variable with c.m.f. given by

$$
F_{X}(x)= \begin{cases}0 & \text { if } x<0 \\ 0.3 & \text { if } 0 \leq x<2 \\ 0.7 & \text { if } 2 \leq x<4 \\ 1 & \text { if } x \geq 4\end{cases}
$$

- $p_{X}(0)=0.3-0=0.3$
- $p_{X}(2)=0.7-0.3=0.4$
- $p_{X}(4)=1-0.7=0.3$

