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Where We’ve Been

• Axioms of Probability, Probability Spaces, Counting• Conditional Probabilities, independence, etc.
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Random Variables



Leadup

• Let’s consider again the experimentof tossing a coin twice.• We saw previously that one possibleoutcome space is Ω = {H,T}2 =
{(H,H), (H,T ), (T ,H), (T ,T )}• Suppose I am only interested in the
number of heads I observed, not theactual configuration of heads andtails.• In other words, I seek somesummarizing quantity; specifically,one that takes an outcome and spitsout the number of heads.• Hm, takes in an element and spitsout a number...• Smells like a function!
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Random Variables

Definition: Random Variable

Given a probability space (Ω, F ,P), a random variable is a function that mapsfrom Ω to R. Oftentimes we use capital letters to denote random variables; forexample,
X : Ω → R

• So, in our coin tossing example, let X denote the number of heads in my two cointosses. Then:
X ((H,H)) = 2; X ((H,T )) = 1; X ((T ,H)) = 1; X ((T ,T )) = 0

• Or, equivalently, (H,H) 7→ 2; (H,T ) 7→ 1; (T ,H) 7→ 1; (T ,T ) 7→ 0
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State Space

Definition: State Space (Support)

Given a probability space (Ω, F ,P) and a random variable X : Ω 7→ R, wedefine the state space (sometimes called the support) of X to be the image ofΩ. In other words, letting SX denote the state space of X , we have
SX := X (Ω) = {y ∈ R : y = X (ω) for some ω ∈ Ω}

• So, in our coin tossing example where X denotes the number of heads observed,then SX = {0, 1, 2}.
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Classification of Random Variables

• We classify random variables based on their state space.
Definition: Discrete/Continuous Random Variables

Given a probability space (Ω, F ,P) and a random variable X : Ω → R, we say
X is a discrete random variable (or just “X is discrete”) if its state space is atmost countable; otherwise we say X is a continuous random variable (or just“X is continuous”).
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Countable vs. Uncountable

• OK, so I guess it’s time to finally address the “countable vs. uncountable” issue.• Here is how I like to (intuitively) think about things. Clearly, both Z and R havean infinite number of elements.• However, in the sense of subsets, R is “bigger” than Z (remember when wetalked about comparing sets?) Therefore, it makes sense that R should be“bigger” than Z in the sense of cardinality as well.• Additionally, between any two integers are an infinite number of real numbers!• So, either way we cut it, it seems like the cardinality of R should be larger thanthat of Z.• This is why we say Z is countably infinite, whereas R is uncountably infinite.• Intervals (closed, open, or half-open/half-closed) are also uncountably infinite.
• There is a way to make the notion of countable vs. uncountable more rigorous(and you do so in classes like MATH 8 or PSTAT 8), but we won’t worry aboutthat level of distinction for this class.
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Discrete vs. Continuous

• Returning to our coin tossing example where X denotes the number of heads Iobserved- we saw that SX = {0, 1, 2} meaning X is discrete.

• Suppose I break a stick of length 1 into two smaller pieces by picking abreakpoint at random along the length of the stick. If L denotes the length of theshorter piece, then SL = [0, 1/2] which shows that L is continuous.
• We will focus on Discrete Random Variables for now; then we’ll turn our attentionto continuous ones.
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Discrete Random Variables



Leadup

• Note that our discussion thus far has been devoid of any mention of P (at least,beyond the notion of a probability space).• Let’s incorporate probabilities into the mix.
Definition: Probability Mass Function (P.M.F.)

Given a probability space (Ω, F ,P) and a random variable X , we define the
probability mass function (or p.m.f., for short) as

pX (k) := P(X = k)
for all values of k ∈ R. Note that the pX (k) is nonzero only when k ∈ SX , but
pX (k) should be defined over the entire real line.
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PMF

• Let’s return to our coin tossing example: recall that
X ((H,H)) = 2; X ((H,T )) = 1; X ((T ,H)) = 1; X ((T ,T )) = 0

• Now, suppose the coin were fair; then we could utilize the classical definition ofprobability to construct the p.m.f. of X :
pX (k) =


1/4 if k = 0

1/2 if k = 1

1/4 if k = 2

0 otherwise
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PMF

• Now, I have glossed over something which we should perhaps examine a littlemore closely: what does P(X = k) really mean?• That is, P only acts on events, so what does the event {X = k} mean?• Well, when we write {X = k} we really mean “the set of all outcomes ω ∈ Ω thatget mapped to k , under X .” In other words:
{X = k} := {ω ∈ Ω : X (ω) = k}

• In fact, we can generalize this notation even further: for a set B ⊆ R, we write
{X ∈ B} := {ω ∈ Ω : X (ω) ∈ B}

For instance, we will write
{X ≤ k} := {ω ∈ Ω : X (ω) ≤ k}

• So, for example, in our coin tossing problem,
pX (1) = P(X = 1) = P ({(H,T ), (T ,H)}) = |{(H,T ), (T ,H)}|

4
= 2

4
= 1

2
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PMF

• By the way, we can also express PMF’s in tabular format:
k 0 1 2

pX (k) 1/4 1/2 1/4

• Sometimes, we can get lucky and even write our p.m.f. as a (somewhat)closed-form expression:
pX (k) = {(2

k

) (
1
2

)2 if k = 0, 1, 2
0 otherwise
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PMF

• So, to reiterate: the p.m.f. represents all the possible values a random variablecan take, and the probability with which the random variable attains those values.• P.M.F’s can be expressed in three possible ways: using a piecewise-definedfunction, using a table, or, sometimes, using a closed-form expression (with a “0otherwise” case)
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PMF

• We have a set of tools we can use to verify whether or not a specified function isin fact the p.m.f. of a random variable.
Theorem: Verifying that a Function is a PMF

Consider a probability space (Ω, F ,P), and a function pX : R → R. If pXsatisfies the following two conditions:(1) Nonnegativity: pX (k) ≥ 0 for all k ∈ R(2) Summing to Unity:
∑

k pX (k) = 1then pX is the p.m.f. of a random variable.
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Example

Show that the function
pX (k) = {(

1
2

)k if k = 1, 2, · · ·
0 otherwiseis a valid probability mass function.

• First note that (1/2)k ≥ 0 for every k ∈ {1, 2, · · · }; therefore condition (1) issatisfied.• Additionally, ∑
k

pX (k) = ∞∑
k=1

(
1

2

)k = (
1
2

)
1 −

(
1
2

) = 1 ✓

Therefore condition (2) is satisfied.• Thus, since both conditions are satisfied, pX (k) is the p.m.f. of a random variable.• You need to check both conditions! It’s not enough to just say “sums to unity;”you also need to check nonnegativity.
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Probabilities from PMF’s

• Once we have a p.m.f. of a random variable, we can compute probabilities bysumming up values of the p.m.f.:
Theorem: Probabilities from PMF’s

Given a probability space (Ω, F ,P) and a random variable X with p.m.f.
pX (k), we have

P(X ∈ B) = ∑
{x :x∈B}

pX (k)
• For example, in our coin tossing example, suppose we want the probability ofobserving at most 1 heads: then we use

P(X ≤ 1) = P(X = 0) +P(X = 1) = 1

4
+ 1

2
= 3

4
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CMF

Definition: CMF

Given a probability space (Ω, F ,P) and a random variable X , we define the
cumulative mass function (or c.m.f., for short) to be

FX (x) := P(X ≤ k)
• So, on the previous slide, for instance, we found FX (1).
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Example (Chalkboard)

On a table, I have three boxes. I know that 2 of the 3 boxes contain a reward of $100,but the other box will actually cost me $100. Suppose I open two boxes at random(note that once a box is opened it cannot be re-opened). Letting W denote my netwinnings, what is the p.m.f. of W ?
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Expectation

Definition: Expected Value

Given a probability space (Ω, F ,P) and a discrete random variable X , we definethe expected value (or just expectation) of X to be
E[X ] := ∑

k

k · pX (k)

• So, for instance, in our coin tossing example
E[X ] = 0 · pX (0) + 1 · pX (1) + 2 · pX (2)

= 0 · 1
4

+ 1 · 1
2

+ 2 · 1
4

= 1

• This represents the “average” number of heads.
• Key Point: E[X ] may not be in the state space of X . As an example: considerrolling a fair six-sided die and letting X denote the number that is showing. Then
E[X ] = 7/2 (I leave it to you to show this), despite the fact that
SX = {1, 2, 3, 4, 5, 6}.
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Expectation of a Function

Theorem: Law of the Unconscious Statistician (LOTUS)

Given a probability space (Ω, F ,P) and a discrete random variable X , we have
E[g (X )] = ∑

k

g (k) · pX (k)

• Note that plugging in g (k) = k yields our familiar notion of expectation.• Additionally, note that this is a theorem; it is not a fact, but rather somethingthat must be proven. (We omit the proof for now).• Also, you may ask: what does g (X ), a function of a random variable mean? Well,we’ll discuss this in greater detail in a later lecture. For now, here is someintuition: g : R → R and X : Ω → R meaning (g ◦ X ) : Ω → R; that is, (g ◦ X ) isin fact a random variable!• Again, more on this in a later lecture.
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Moments

Definition: nth Moment of a Random Variable

Given a probability space (Ω, F ,P) and a discrete random variable X , we definethe nth moment of X to be
µn := E[X n ] = ∑

k

kn · pX (k)

• Note that E[X ] is simply the first moment of X . For this reason, we often notate
E[X ] by µ.
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Variance

• Suppose we are interested in a measure of the “spread” of a random variable.• A sensible measure would be the “average distance from the center.” Thismotivates our definition of variance:
Definition: Variance

Given a probability space (Ω, F ,P) and a random variable X , we define the
variance of X to be Var(X ) := E{[X −E(X )]2}
It turns out that Var(X ) = E[X 2] − [E(X )]2i.e. the variance of X is equal to the second moment, minus the square of thefirst moment.

• Sometimes we are interested in the square root of variance; we call this quantitythe standard devitaion. In other words,
SD(X ) := √Var(X ) = √

E
{[X −E(X )]2}
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Summary

• That’s a lot of information, and a lot of terms!• Let me try and summarize some things.• We start with the notion of a random variable X , which is a mapping from Ω to R.• The state space of X is the image of Ω, under X : SX := X (Ω)• The probability mass function (p.m.f.) is a function that takes in a real number kand outputs the probability that X = k (i.e. the probability of the set of alloutcomes that get mapped to k , under X )• A p.m.f. must be nonnegative, and sum to unity.• The cumulative mass function (c.m.f.) FX (x) at a point x is the sum of pX (k) for which kis at most x .• The expected value (or expectation) of a random variable gives a measure of an“average” value of X .• We can compute expectations of functions of random variables (which are, in fact,random variables) using the Law of the Unconscious Statistician.• The nth moment of a random variable X is defined to be µn := E[X n ]• Thus, the first moment is simply the expectation• The variance of X , a measure of “spread,” is related to the second moment of X .
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Comprehensive Example

Let X be a random variable with p.m.f. given as below:
k −1 1 2

pX (k) 2/5 1/4 7/20

(a) Find E[X ](b) Find E[X 2](c) Find FX (x), the c.m.f. of X .
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CMF’s, again

• There is something you might notice about the c.m.f. of X in the previousexample: it is a step function.• This is in fact true of all discrete random variables: in other words:
Fact: C.M.F.’s

The c.m.f. of a discrete random variable X is a step function, with points ofdiscontinuity corresponding to the points in the state space of X and with themagnitudes of the jump discontinuities corresponding to the values of the p.m.f.of X .
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Example

Suppose X is a random variable with c.m.f. given by
FX (x) =


0 if x < 0

0.3 if 0 ≤ x < 2

0.7 if 2 ≤ x < 4

1 if x ≥ 4

• pX (0) = 0.3 − 0 = 0.3• pX (2) = 0.7 − 0.3 = 0.4• pX (4) = 1 − 0.7 = 0.3
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