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Where We’ve Been

• Axioms of Probability, Probability Spaces, Counting• Conditional Probabilities, independence, etc.• Basics of Random Variables (classification, p.m.f., c.m.f., moments)
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Discrete Distributions



Bernoulli Trial

Definition: Bernoulli Trial

A Bernoulli Trial is an experiment in which:• There is a well-defined notion of “success” and “failure” (i.e. non-success)• The probability of success remains a constant value p over allrepetitions of this trial.
• Tossing a coin is an example of a Bernoulli Trial; “sucess” could be “lands heads”,and whether or not the coin is fair we assume there to be a fixed probability p ofthe coin landing heads.
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Leadup

• Consider the following three random variables:1. Toss a fair coin 100 times, and let X denote the number of heads.2. Roll a fair six-sided die 27 times, and let Y denote the number of times the die lands onan even number.3. From a population of size 1000, in which 4 people have a particular disease, take asample of 100 people with replacement and let Z denote the number of individuals withdiseases I observe.• For each of these experiments and associated random variables, we could followthe same steps as we did when dealing with our two-coin example: in otherwords, we could construct Ω, find the mapping X (or Y or Z ), construct the p.m.f.,and find E[X ] (or E[Y ] or E[Z ]).• But, notice that each of the scenarios listed above are all just special cases of thefollowing:
In n independent Bernoulli trials, where each trial results in a “success” with
probability p, let W denote the number of successes.

• So, if we can deal with this general case, we can simply plug in different values of
n and p.
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Distributions

• This is how I like to think about distributions: as a “package” which deals withsome general question in generality, from which we can glean information onindividual situations.• The true technical definition of a distribution is much more technical! (But, forthe purposes of this class, this notion of a distribution as a “package” will suffice.)
• So, for example: if W denotes the number of successes in n independent Bernoullitrials, and where the probability on any given trial is p, we say W follows the

Binomial distribution with parameters n and p, and notate this W ∼ Bin(n, p).
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Binomial Distribution

• Let’s try an example.• Suppose W ∼ Bin(n, p); in other words, W denotes the number of successes in nindependent Bernoulli trials with probability of success p.• We can derive the p.m.f. of W using some counting arguments:• When computing pW (k), we are computing the probability of exactly k successes in ntrials.• Suppose that these k trials occurred consecutively, as my first k trials. The probabilityof this is simply pk (1 − p)n−k .• But, the event {W = k} doesn’t mean “k successes all at the beginning,” but rather “ksuccesses across all n trials.” Thus, we need to multiply by all of the ways in which wecan distribute the k successes among the n trials: (nk).• That is:
pW (k) = {(nk)pk (1 − p)n−k if k = 0, 1, 2, · · · , n

0 otherwise• This is the p.m.f. of the Binomial distribution with parameters n and p.
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Binomial Distribution

• With the p.m.f. of W , we can now compute E[W ]:
E[W ] :=∑

k

kpW (k) = n∑
k=0

k ·
(
n

k

)
pk (1 − p)n−k

= n∑
k=1

k · n!
k!(n − k)! · pk (1 − p)n−k

= n∑
k=1

n!(k − 1!)(n − k)! · pk (1 − p)n−k

= n∑
k=1

n · (n − 1)!(k − 1)!([n − 1] − [k − 1])!pk (1 − p)n−k

= n
n∑

k=1

(
n − 1

k − 1

)
pk (1 − p)n−k

= n
n−1∑
m=0

(
n − 1

m

)
pm+1(1 − p)n−m−1

= np
n−1∑
m=0

(
n − 1

m

)
pm(1 − p)(n−1)−m = np(((((((p + 1 − p)n−1 = np
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Binomial Distribution

• With a bit of work, one can show that Var(W ) = np(1 − p)
• So, to summarize: if W counts the number of successes in n independentBernoulli trials, then W ∼ Bin(n, p) and:• SW = {0, 1, · · · , n}

• pW (k) =

(
n

k

)
pk (1 − p)n−k if k = 0, 1, · · · , n

0 otherwise• E[W ] = np• Var(W ) = np(1 − p)
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Example

Suppose I simultaneously roll 10 fair six-sided dice, and let X denote the number ofeven numbers showing.
(a) What is the probability that X is 2?(b) What is E[X ]?(c) What is Var(X )?

• We have a well-defined notion of success: “die lands on an even number.”• Since the coin is fair, we can use the classical definition of probability to say
p := P(success) = P(even number) = P({2, 4, 6}) = 1/2• Additionally, we have n = 10 Bernoulli Trials (one corresponding to each die roll),meaning X ∼ Bin(10, 1/2)

• From here, we can easily answer each of the subquestions using our informationon the Binomial distribution!
(a) P(X = 2) = (10

2

)(
1

2

)2 ( 1

2

)10−2 = 45

1024(b) E[X ] = (10) ( 12 ) = 5 ; Var(X ) = (10) ( 12 ) (1 − 1
2

) = 5/2
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Another Distribution:

• Consider again a sequence of Bernoulli trials.• Now, however, let X denote the number of trials needed to observe our firstsuccess? (Let’s include the final successful trial when counting). So, for example,if we observe (Failure) (Failure) (Failure) (Success)then X = 4.• What is the state space of X? SX = {1, 2, 3, · · · }• To find the p.m.f., we can construct a modified slot diagram. Specifically, when
X = k we must have (k − 1) failures followed by one success:

Failure&Failure& · · · &Failure︸ ︷︷ ︸
k − 1 trials

&Success
• Therefore P(X = k) = (1 − p)k−1 · p, meaning

pX (k) = {(1 − p)k−1 · p if k = 1, 2, 3, · · ·
0 otherwise

• This is called the Geometric Distribution, with parameter p.
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Geometric Distribution: Expectation and Variance

• We can now find E[X ], if X ∼ Geom(p)
E[X ] =∑

k

pX (k) = ∞∑
k=1

k · (1 − p)k−1 · p

= p

1 − p

∞∑
k=1

k · (1 − p)k
= p

1 − p

∞∑
k=0

k · (1 − p)k
= p

1 − p
× 1 − p[1 − (1 − p)]2 = p

1 − p
× 1 − p

p2
= 1

p

• You will also show that Var(X ) = 1−p
p2

(there is a very neat trick to thiscomputation!)
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Geometric Distribution

• So, to summarize: if X counts the number of independent Bernoulli trials(including the final successful trial) needed to observe the first success, we have
X ∼ Geom(p) and:

• SX = {1, 2, 3, · · · }

• pX (k) = {(1 − p)k−1 · p if k = 1, 2, · · ·
0 otherwise• E[X ] = 1

p• Var(X ) = 1 − p

p2

• As an example: suppose we want to know the average number of rolls of a fairsix-sided die needed to observe the number “1” for the first time. Letting Xdenote the number of rolls until we observe our first “1” we have X ∼ Geom(1/6),meaning
E[X ] = 1(1/6) = 6
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Extending the Geometric Distribution

• We have seen that the Geometric distribution arises when counting the number oftrials until our first success.• What if we wanted to count the number of trials until our second success? or ourthird success?• Let X denote the number of independent Bernoulli trials needed to observe the
r th success, where r ∈ N.• The state space of X is SX = {r , r + 1, r + 2, · · · }• For the event {X = k} to have occurred, we require (r − 1) successes among thefirst k − 1 trials, followed by a success on the k th trial:

· · ·︸ ︷︷ ︸(r − 1) successes in (k − 1) trials
success

• The probability of observing (r − 1) successes in (k − 1) trials can be computedusing the Binomial distribution! The probability of this is(
k − 1

r − 1

)
· pr−1 · (1 − p)k−r

• Therefore, P(X = k) is given by
P(X = k) = (k − 1

r − 1

)
· pr−1 · (1 − p)k−r · p = (k − 1

r − 1

)
· pr · (1 − p)k−r
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The Negative Binomial Distribution

• Because of the presence of the Binomial distribution in our computation above,this new distribution is called the Negative Binomial distribution withparameters r and p.• So, to summarize: if X counts the number of independent Bernoulli trials neededto observe r th success then X ∼ NegBin(r , p) and:
• SX = {r , r + 1, r + 2, · · · }

• pX (k) =

(
k − 1

r − 1

)
· pr · (1 − p)k−r if k = r , r + 1, r + 2, · · ·

0 otherwise• E[X ] = r

p• Var(X ) = r · (1 − p)
p2
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The Negative Binomial Distribution

When tossing a fair coin, what is the probability that the fourth heads occurs on the12th toss?
• Let X denote the number of tosses needed to observe the fourth heads; then

X ∼ NegBin(4, 1/2)• We seek P(W = 12); by the formula for the p.m.f. of the Negative Binomialdistribution we have
P(W = 12) = (12 − 1

4 − 1

)(
1

2

)4 (1

2

)12−4 = (
11

3

)(
1

2

)12

• By the way, the NegBin(1, p) distribution has another name. What is that name?The Geometric(p) distribution.
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Leadup

• Now, suppose we have a lot of N items; G of which are good and the remaining
B := N − G of which are bad. If I take a sample of size n without replacement, Ican let X denote the number of good elements in my sample.• We have actually already found the p.m.f. of X , back when we did tree diagrams!• In other words, to compute P(X = k) we have

N

G(Good) N − G(Bad)
k n − k

=⇒
(G
k

)(N−G
n−k

)(N
n

)

• X is said to follow the Hypergeometric Distribution, with parameters N, G , and
n: X ∼ HyperGeom(N,G , n).• Note that the hypgergeometric distribution has three parameters! It may be difficult toremember what those three are; here’s how I remember them. The first parameter is thepopulation size, the second is the number of good elements, and the final parameter isthe sample size.
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Hypergeometric Distribution

• With a bit of work, one can see that if X ∼ HyperGeom(N,G , n) we have:• SX = {max{0, n + G − N}, · · · , min{n,G}}

• pX (k) =

(
G
k

)(
N−G
n−k

)(
N
n

) if k ∈ SX

0 otherwise• E[X ] = n · G
N• Var(X ) = n ·
(
G

N

)
·
(
1 − G

N

)
·
(
N − n

N − 1

)
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Discrete Uniform Distribution

• Another distribution arises in the following context: suppose I have a box with ntickets, labelled x1 through xn . If I draw one ticket at random and let X denotethe number showing on the ticket, then X follows the so-called Discrete Uniform
Distribution, on the set {x1, · · · , xn}. We notate this

X ∼ DiscUnif{x1, · · · , xn}

• A key point is that x1, · · · , xn needn’t be consecutive numbers! For example, it makesperfect sense to write X ∼ DiscUnif{1, 4, 5, 7.8, 10}.
• One can show:• SX = {x1, · · · , xn}

• P(X = k) = { 1
n if k ∈ SX

0 otherwise
• E[X ] = 1

n

n∑
i=1

xi =: x̄ ; Var(X ) = 1

n

n∑
i=1

x2
i −

(
1

n

n∑
i=1

xi

)2
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Discrete Uniform Distribution

• We can get a bit more specific if we consider theDiscUnif{a, a + 1, a + 2, · · · , b − 1, b} distribution for fixed numbers a, b with
a < b: firstly, for notational convenience, let n := b − a + 1 denote the numbers inthe state space of X . Then:

• SX = {a, a + 1, a + 2, · · · , b − 1, b}

• P(X = k) = { 1
n if k ∈ SX

0 otherwise• E[X ] = a + b

2• Var(X ) = n2 − 1

12
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Practice Makes Perfect

• I know that’s a lot of distributions!• I can’t stress it enough- practice makes perfect.• Over the next few discussion worksheets I’ll try and incorporate more problemsthat test your knowledge on discrete distributions.• I highly encourage you to consult the textbook for problems as well!
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I Want to Play A Game...

bit.ly/distmatch
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Poisson Point Process

Definition: Poisson Point Process

The Poisson Point Process with rate λ > 0 (or simply Poisson Process) countsthe number of events occurring in a fixed time or space, subject to the followingassumptions:(1) The number of events occurring in non-overlapping intervals areindependent,(2) Events occur at a constant rate of λ per unit time,(3) Events cannot occur simultaneously.
• Some Examples:• The number of cars arriving at a traffic light• The number of telephone calls arriving at a switchboard• The number of blueberries in a 1 in3 piece of muffin
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Poisson Point Process

• Let X denote the number of arrivals in an interval of length 1. What is thedistribution of X?• First, let’s discretize our notion of time. In other words, let’s divide our timeinterval into n subintervals of equal length:[
time

1
n

2
n

3
n · · ·

(n−1)·t
n

1 = n
n

]
• By assumption (3), we can make n large enough (i.e. we can make our intervalsmall enough) so that the probability of observing two or more arrivals in any ofthese subintervals is 0.• Furthermore, by assumption (2) there is a constant rate λ of arrivals, meaning theprobability of observing an arrival in any subinterval of length 1/n is simply λ/n.• Therefore, X effectively counts the number of successes in n subintervals, where a“success” is observing an arrival... In other words, X ∼ Bin(n = n, λ = p

n ).
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Poisson Point Process

• Now, of course, time is not in actuality discrete; it is continuous. So, the truedistribution of X results in taking the limit as n → ∞ of our approximation to Xabove. That is:
P(X = k) lim

n→∞
P (X = k under our discretized approximation)

= lim
n→∞

[(
n

k

)(
λ
n

)k (
1 − λ

n

)n−k
]

= lim
n→∞

[
n!

k!(n − k)! · 1

nk
· (λ)k ·

(
1 − λ

n

)n−k
]

= lim
n→∞

[
n × (n − 1) × · · · × (n − k + 1)

n × n × · · · × n
· (λ)k

k! ·
(
1 − λ

n

)n−k
]

= (λ)k
k! · lim

n→∞

[
n × (n − 1) × · · · × (n − k + 1)

n × n × · · · × n

]
·

lim
n→∞

[(
1 − λ

n

)n]
· lim
n→∞

[(
1 − λ

n

)−k
]
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Poisson Point Process

• Let us examine each of the terms on the RHS separately.• Let’s start with the rightmost term. As n → ∞, (λ/n) → 0 and so [1 − (λ/n)] → 1, andthus [1 − (λ/n)]−k → 1.• Let’s now examine the first term. We first rewrite the quantity inside the limit as:
(1) ×

(
n − 1

n

)
× · · · ×

(
n − k + 1

n

) = (1) ·
(
1 − 1

n

)
× · · · ×

(
1 − n − k + 1

n

)
The key to note is that, in the rightmost formulation above, the numerators are alwayssmaller than the denominators. This means that, when we let n → ∞, the fractionalterms all go to 0 and we are left with

lim
n→∞

[(1) ·
(
1 − 1

n

)
× · · · ×

(
1 − n − k + 1

n

)] = 1 × 1 × · · · × 1 = 1

• Finally, we examine the inner limit. It will be useful to recall the following definitionfrom calculus:
ea = lim

n→∞

(
1 + a

n

)n
Therefore, we immediately see that

lim
n→∞

[(
1 − λ

n

)n] = e−λ

• Putting everything together, we find that:
P(k occurrences in the interval [0, 1]) = (λ)k

k! · e−λ
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The Poisson Distribution

• We call this distribution the Poisson Distribution, with parameter λ.• So, if X counts the number of arrivals in a unit time interval in a Poisson PointProcess with rate λ, then X ∼ Pois(λ) and:
• SX = {0, 1, 2, · · · }

• pX (k) =
e−λ · λk

k! if k = 0, 1, 2, · · ·

0 otherwise• E[X ] = λ• Var(X ) = λ

• Another very useful property: if arrivals occur according to a Poisson Processwith rate λ, then the number of arrivals in an interval of length t follows thePois(λ · t) distribution.• Intuitively, this makes sense: if cars arrive at an average rate of 2 per minute, then theaverage number of cars arriving in a 30-second interval should be 1.
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Example

Suppose calls arrive at a call center according to a Poisson Process with an averagerate of 2 calls per minute.
(a) What is the probability of observing exactly 2 calls between 1pm and 1:01pm?(b) What is the expected number of calls arriving between 2pm and 2:10pm?

Part(a)

• Let X denote the number of calls arriving between 1pm and 1:01pm. Then
X ∼ Pois(2) and

P(X = 2) = e−2 · 2
2

2!
Part(b)

• Let Y denote the number of calls arriving between 2:00pm and 2:10pm. Sincethere are 10 minutes between 2:00pm and 2:10pm we have Y ∼ Pois(2 · 10) = 20and so
E[Y ] = 20
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Leadup

• With Poisson Point Processes, drawing a timeline can often be very useful:
N[0,t]

time
t

× × ×

T1 T2
T3

• N[0,t ]; number of arrivals in [0, t ].• Discrete; N[0,t ] ∼ Pois(λt)
• Ti ; time between (i − 1)thand i tharrivals. Sometimes called interarrival times.• State space: STi = [0, ∞)• So, Ti is continuous!

Discrete Distributions Poisson Point Processes29


	Discrete Distributions
	Poisson Point Processes

