4: Discrete Distributions

PSTAT 120A: Summer 2022

Ethan P. Marzban June 29, 2022

University of California, Santa Barbara

- Axioms of Probability, Probability Spaces, Counting
- Conditional Probabilities, independence, etc.
- Basics of Random Variables (classification, p.m.f., c.m.f., moments)

Discrete Distributions

Definition: Bernoulli Trial

A Bernoulli Trial is an experiment in which:

- There is a well-defined notion of "success" and "failure" (i.e. non-success)
- The probability of success remains a constant value *p* over all repetitions of this trial.
- Tossing a coin is an example of a Bernoulli Trial; "sucess" could be "lands heads", and whether or not the coin is fair we assume there to be a fixed probability *p* of the coin landing heads.

Leadup

- Consider the following three random variables:
 - 1. Toss a fair coin 100 times, and let X denote the number of heads.
 - 2. Roll a fair six-sided die 27 times, and let *Y* denote the number of times the die lands on an even number.
 - 3. From a population of size 1000, in which 4 people have a particular disease, take a sample of 100 people with replacement and let *Z* denote the number of individuals with diseases I observe.
- For each of these experiments and associated random variables, we could follow the same steps as we did when dealing with our two-coin example: in other words, we could construct Ω, find the mapping X (or Y or Z), construct the p.m.f., and find E[X] (or E[Y] or E[Z]).
- But, notice that each of the scenarios listed above are all just special cases of the following:

In *n* independent Bernoulli trials, where each trial results in a "success" with probability *p*, let *W* denote the number of successes.

• So, if we can deal with this general case, we can simply plug in different values of *n* and *p*.

- This is how I like to think about distributions: as a "package" which deals with some general question in generality, from which we can glean information on individual situations.
- The true technical definition of a distribution is much more technical! (But, for the purposes of this class, this notion of a distribution as a "package" will suffice.)
- So, for example: if W denotes the number of successes in n independent Bernoulli trials, and where the probability on any given trial is p, we say W follows the **Binomial** distribution with **parameters** n and p, and notate this $W \sim Bin(n, p)$.

- Let's try an example.
- Suppose W ~ Bin(n, p); in other words, W denotes the number of successes in n independent Bernoulli trials with probability of success p.
- We can derive the p.m.f. of *W* using some counting arguments:
 - When computing $p_W(k)$, we are computing the probability of exactly k successes in n trials.
 - Suppose that these k trials occurred consecutively, as my first k trials. The probability
 of this is simply p^k(1 p)^{n-k}.
 - But, the event {W = k} doesn't mean "k successes all at the beginning," but rather "k successes across all n trials." Thus, we need to multiply by all of the ways in which we can distribute the k successes among the n trials: (ⁿ_k).
 - That is:

$$p_W(k) = \begin{cases} \binom{n}{k} p^k (1-p)^{n-k} & \text{if } k = 0, 1, 2, \cdots, n \\ 0 & \text{otherwise} \end{cases}$$

• This is the p.m.f. of the Binomial distribution with parameters *n* and *p*.

E

• With the p.m.f. of W, we can now compute $\mathbb{E}[W]$:

$$W] := \sum_{k} k p_{W}(k) = \sum_{k=0}^{n} k \cdot {\binom{n}{k}} p^{k} (1-p)^{n-k}$$

$$= \sum_{k=1}^{n} k \cdot \frac{n!}{k!(n-k)!} \cdot p^{k} (1-p)^{n-k}$$

$$= \sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} \cdot p^{k} (1-p)^{n-k}$$

$$= \sum_{k=1}^{n} n \cdot \frac{(n-1)!}{(k-1)!([n-1]-[k-1])!} p^{k} (1-p)^{n-k}$$

$$= n \sum_{k=1}^{n} {\binom{n-1}{k-1}} p^{k} (1-p)^{n-k}$$

$$= n \sum_{m=0}^{n-1} {\binom{n-1}{m}} p^{m+1} (1-p)^{n-m-1}$$

$$= n p \sum_{m=0}^{n-1} {\binom{n-1}{m}} p^{m} (1-p)^{(n-1)-m} = n p (p+1-p)^{n-1} = np$$

Discrete Distributions

- With a bit of work, one can show that Var(W) = np(1-p)
- So, to summarize: if *W* counts the number of successes in *n* independent Bernoulli trials, then *W* ~ Bin(*n*, *p*) and:

•
$$S_W = \{0, 1, \cdots, n\}$$

• $p_W(k) = \begin{cases} \binom{n}{k} p^k (1-p)^{n-k} & \text{if } k = 0, 1, \cdots, n \\ 0 & \text{otherwise} \end{cases}$

•
$$\mathbb{E}[W] = np$$

•
$$Var(W) = np(1-p)$$

Example

Suppose I simultaneously roll 10 fair six-sided dice, and let X denote the number of even numbers showing.

- (a) What is the probability that *X* is 2?
- (b) What is $\mathbb{E}[X]$?
- (c) What is Var(X)?
 - We have a well-defined notion of success: "die lands on an even number."
 - Since the coin is fair, we can use the classical definition of probability to say $p := \mathbb{P}(\text{success}) = \mathbb{P}(\text{even number}) = \mathbb{P}(\{2, 4, 6\}) = 1/2$
 - Additionally, we have n = 10 Bernoulli Trials (one corresponding to each die roll), meaning $X \sim Bin(10, 1/2)$
 - From here, we can easily answer each of the subquestions using our information on the Binomial distribution!

(a)
$$\mathbb{P}(X = 2) = {\binom{10}{2}} {\left(\frac{1}{2}\right)^2} {\left(\frac{1}{2}\right)^{10-2}} = \frac{45}{1024}$$

(b) $\mathbb{E}[X] = (10) {\left(\frac{1}{2}\right)} = 5$; $\operatorname{Var}(X) = (10) {\left(\frac{1}{2}\right)} {\left(1 - \frac{1}{2}\right)} = \frac{5/2}{1024}$

Another Distribution:

- Consider again a sequence of Bernoulli trials.
- Now, however, let *X* denote the number of trials needed to observe our first success? (Let's include the final successful trial when counting). So, for example, if we observe

(Failure) (Failure) (Failure) (Success)

then X = 4.

- What is the state space of X? $S_X = \{1, 2, 3, \dots\}$
- To find the p.m.f., we can construct a modified slot diagram. Specifically, when X = k we must have (k 1) failures followed by one success:

$$\underbrace{\underline{\mathsf{Failure}} \& \underline{\mathsf{Failure}}_{k-1 \text{ trials}} \& \underline{\mathsf{Success}}_{k-1 \text{ trials}}$$

• Therefore $\mathbb{P}(X = k) = (1 - p)^{k-1} \cdot p$, meaning

$$p_X(k) = \begin{cases} (1-p)^{k-1} \cdot p & \text{if } k = 1, 2, 3, \cdots \\ 0 & \text{otherwise} \end{cases}$$

• This is called the Geometric Distribution, with parameter *p*.

Geometric Distribution: Expectation and Variance

• We can now find $\mathbb{E}[X]$, if $X \sim \text{Geom}(p)$

$$\mathbb{E}[X] = \sum_{k} p_{X}(k) = \sum_{k=1}^{\infty} k \cdot (1-p)^{k-1} \cdot p$$
$$= \frac{p}{1-p} \sum_{k=1}^{\infty} k \cdot (1-p)^{k}$$
$$= \frac{p}{1-p} \sum_{k=0}^{\infty} k \cdot (1-p)^{k}$$
$$= \frac{p}{1-p} \times \frac{1-p}{[1-(1-p)]^{2}} = \frac{p}{1-p} \times \frac{1-p}{p^{2}} = \frac{1}{p}$$

• You will also show that $Var(X) = \frac{1-p}{p^2}$ (there is a very neat trick to this computation!)

Geometric Distribution

 So, to summarize: if X counts the number of independent Bernoulli trials (including the final successful trial) needed to observe the first success, we have X ~ Geom(p) and:

•
$$S_X = \{1, 2, 3, \dots\}$$

• $p_X(k) = \begin{cases} (1-p)^{k-1} \cdot p & \text{if } k = 1, 2, \dots \\ 0 & \text{otherwise} \end{cases}$
• $\mathbb{E}[X] = \frac{1}{p}$
• $\operatorname{Var}(X) = \frac{1-p}{p^2}$

• As an example: suppose we want to know the average number of rolls of a fair six-sided die needed to observe the number "1" for the first time. Letting X denote the number of rolls until we observe our first "1" we have $X \sim \text{Geom}(1/6)$, meaning

$$\mathbb{E}[X] = \frac{1}{(1/6)} = \frac{6}{6}$$

Extending the Geometric Distribution

- We have seen that the Geometric distribution arises when counting the number of trials until our first success.
- What if we wanted to count the number of trials until our second success? or our third success?
- Let X denote the number of independent Bernoulli trials needed to observe the r^{th} success, where $r \in \mathbb{N}$.
- The state space of X is $S_X = \{r, r+1, r+2, \cdots\}$
- For the event $\{X = k\}$ to have occurred, we require (r 1) successes among the first k 1 trials, followed by a success on the kth trial:

• The probability of observing (r - 1) successes in (k - 1) trials can be computed using the Binomial distribution! The probability of this is

$$\binom{k-1}{r-1} \cdot p^{r-1} \cdot (1-p)^{k-r}$$

• Therefore, $\mathbb{P}(X = k)$ is given by

$$\mathbb{P}(X=k) = \binom{k-1}{r-1} \cdot p^{r-1} \cdot (1-p)^{k-r} \cdot p = \binom{k-1}{r-1} \cdot p^r \cdot (1-p)^{k-r}$$

Discrete Distributions

- Because of the presence of the Binomial distribution in our computation above, this new distribution is called the **Negative Binomial** distribution with parameters *r* and *p*.
- So, to summarize: if X counts the number of independent Bernoulli trials needed to observe rth success then X ~ NegBin(r, p) and:

•
$$S_X = \{r, r+1, r+2, \cdots\}$$

• $p_X(k) = \begin{cases} \binom{k-1}{r-1} \cdot p^r \cdot (1-p)^{k-r} & \text{if } k = r, r+1, r+2, \cdots \\ 0 & \text{otherwise} \end{cases}$
• $\mathbb{E}[X] = \frac{r}{p}$
• $\operatorname{Var}(X) = \frac{r \cdot (1-p)}{p^2}$

When tossing a fair coin, what is the probability that the fourth heads occurs on the 12th toss?

- Let X denote the number of tosses needed to observe the fourth heads; then $X \sim \text{NegBin}(4, 1/2)$
- We seek $\mathbb{P}(W = 12)$; by the formula for the p.m.f. of the Negative Binomial distribution we have

$$\mathbb{P}(W = 12) = {\binom{12-1}{4-1}} \left(\frac{1}{2}\right)^4 \left(\frac{1}{2}\right)^{12-4} = {\binom{11}{3}} \left(\frac{1}{2}\right)^{12}$$

• By the way, the NegBin(1, *p*) distribution has another name. What is that name? The Geometric(*p*) distribution.

Leadup

- Now, suppose we have a lot of *N* items; *G* of which are good and the remaining B := N G of which are bad. If I take a sample of size *n* without replacement, I can let *X* denote the number of good elements in my sample.
- We have actually already found the p.m.f. of X, back when we did tree diagrams!
- In other words, to compute $\mathbb{P}(X = k)$ we have

- *X* is said to follow the **Hypergeometric Distribution**, with parameters *N*, *G*, and *n*: *X* ~ HyperGeom(*N*, *G*, *n*).
 - Note that the hypgergeometric distribution has three parameters! It may be difficult to remember what those three are; here's how I remember them. The first parameter is the population size, the second is the number of good elements, and the final parameter is the sample size.

• With a bit of work, one can see that if $X \sim \text{HyperGeom}(N, G, n)$ we have:

•
$$S_X = \{\max\{0, n+G-N\}, \dots, \min\{n, G\}\}$$

• $p_X(k) = \begin{cases} \frac{\binom{G}{k}\binom{N-G}{n-k}}{\binom{N}{n}} & \text{if } k \in S_X\\ 0 & \text{otherwise} \end{cases}$
• $\mathbb{E}[X] = n \cdot \frac{G}{N}$
• $\operatorname{Var}(X) = n \cdot \left(\frac{G}{N}\right) \cdot \left(1 - \frac{G}{N}\right) \cdot \left(\frac{N-n}{N-1}\right)$

17

Discrete Uniform Distribution

Another distribution arises in the following context: suppose I have a box with n tickets, labelled x₁ through x_n. If I draw one ticket at random and let X denote the number showing on the ticket, then X follows the so-called Discrete Uniform Distribution, on the set {x₁, ..., x_n}. We notate this

 $X \sim \text{DiscUnif}\{x_1, \cdots, x_n\}$

- A key point is that x₁, · · · , x_n needn't be consecutive numbers! For example, it makes perfect sense to write X ~ DiscUnif{1, 4, 5, 7.8, 10}.
- One can show:

•
$$S_X = \{x_1, \dots, x_n\}$$

• $\mathbb{P}(X = k) = \begin{cases} \frac{1}{n} & \text{if } k \in S_X \\ 0 & \text{otherwise} \end{cases}$
• $\mathbb{E}[X] = \frac{1}{n} \sum_{i=1}^n x_i =: \bar{x}; \quad \text{Var}(X) = \frac{1}{n} \sum_{i=1}^n x_i^2 - \left(\frac{1}{n} \sum_{i=1}^n x_i\right)^2$

• We can get a bit more specific if we consider the DiscUnif{ $a, a + 1, a + 2, \dots, b - 1, b$ } distribution for fixed numbers a, b with a < b: firstly, for notational convenience, let n := b - a + 1 denote the numbers in the state space of X. Then:

•
$$S_X = \{a, a + 1, a + 2, \dots, b - 1, b\}$$

• $\mathbb{P}(X = k) = \begin{cases} \frac{1}{n} & \text{if } k \in S_X \\ 0 & \text{otherwise} \end{cases}$
• $\mathbb{E}[X] = \frac{a+b}{2}$
• $\operatorname{Var}(X) = \frac{n^2 - 1}{12}$

- I know that's a lot of distributions!
- I can't stress it enough- practice makes perfect.
- Over the next few discussion worksheets I'll try and incorporate more problems that test your knowledge on discrete distributions.
- I highly encourage you to consult the textbook for problems as well!

bit.ly/distmatch

Poisson Point Processes

Poisson Point Processes

Definition: Poisson Point Process

The Poisson Point Process with rate $\lambda > 0$ (or simply Poisson Process) counts the number of events occurring in a fixed time or space, subject to the following assumptions:

- The number of events occurring in non-overlapping intervals are independent,
- (2) Events occur at a constant rate of λ per unit time,
- (3) Events cannot occur simultaneously.

- Some Examples:
 - The number of cars arriving at a traffic light
 - · The number of telephone calls arriving at a switchboard
 - The number of blueberries in a 1 in³ piece of muffin

- Let *X* denote the number of arrivals in an interval of length 1. What is the distribution of *X*?
- First, let's discretize our notion of time. In other words, let's divide our time interval into *n* subintervals of equal length:

- By assumption (3), we can make *n* large enough (i.e. we can make our interval small enough) so that the probability of observing two or more arrivals in any of these subintervals is 0.
- Furthermore, by assumption (2) there is a constant rate λ of arrivals, meaning the probability of observing an arrival in any subinterval of length 1/n is simply λ/n .
- Therefore, X effectively counts the number of successes in *n* subintervals, where a "success" is observing an arrival... In other words, $X \sim \text{Bin}(n = n, \lambda = \frac{p}{n})$.

Poisson Point Process

• Now, of course, time is not in actuality discrete; it is continuous. So, the true distribution of X results in taking the limit as $n \to \infty$ of our approximation to X above. That is:

 $\mathbb{P}(X = k) \lim_{n \to \infty} \mathbb{P}(X = k \text{ under our discretized approximation})$ $= \lim_{n \to \infty} \left[\binom{n}{k} \left(\frac{\lambda}{n} \right)^k \left(1 - \frac{\lambda}{n} \right)^{n-k} \right]$ $= \lim_{n \to \infty} \left| \frac{n!}{k!(n-k)!} \cdot \frac{1}{n^k} \cdot (\lambda)^k \cdot \left(1 - \frac{\lambda}{n}\right)^{n-k} \right|$ $= \lim_{n \to \infty} \left| \frac{n \times (n-1) \times \cdots \times (n-k+1)}{n \times n \times \cdots \times n} \cdot \frac{(\lambda)^k}{k!} \cdot \left(1 - \frac{\lambda}{n} \right)^{n-k} \right|$ $= \frac{(\lambda)^{\kappa}}{k!} \cdot \lim_{n \to \infty} \left| \frac{n \times (n-1) \times \cdots \times (n-k+1)}{n \times n \times \cdots \times n} \right|.$ $\lim_{n \to \infty} \left[\left(1 - \frac{\lambda}{n} \right)^n \right] \cdot \lim_{n \to \infty} \left| \left(1 - \frac{\lambda}{n} \right)^{-k} \right|$

25

Poisson Point Process

- Let us examine each of the terms on the RHS separately.
 - Let's start with the rightmost term. As $n \to \infty$, $(\lambda/n) \to 0$ and so $[1 (\lambda/n)] \to 1$, and thus $[1 (\lambda/n)]^{-k} \to 1$.
 - Let's now examine the first term. We first rewrite the quantity inside the limit as:

$$(1) \times \left(\frac{n-1}{n}\right) \times \dots \times \left(\frac{n-k+1}{n}\right) = (1) \cdot \left(1-\frac{1}{n}\right) \times \dots \times \left(1-\frac{n-k+1}{n}\right)$$

The key to note is that, in the rightmost formulation above, the numerators are always smaller than the denominators. This means that, when we let $n \to \infty$, the fractional terms all go to 0 and we are left with

$$\lim_{n\to\infty} \left[(1) \cdot \left(1 - \frac{1}{n}\right) \times \cdots \times \left(1 - \frac{n-k+1}{n}\right) \right] = 1 \times 1 \times \cdots \times 1 = 1$$

• Finally, we examine the inner limit. It will be useful to recall the following definition from calculus:

$$e^{a} = \lim_{n \to \infty} \left(1 + \frac{a}{n} \right)^{r}$$

Therefore, we immediately see that

$$\lim_{n\to\infty}\left[\left(1-\frac{\lambda}{n}\right)^n\right]=e^{-\lambda}$$

• Putting everything together, we find that:

$$\mathbb{P}(k \text{ occurrences in the interval } [0,1]) = \frac{(\lambda)^k}{k!} \cdot e^{-\lambda}$$

26

The Poisson Distribution

- We call this distribution the **Poisson Distribution**, with parameter λ .
- So, if X counts the number of arrivals in a unit time interval in a Poisson Point Process with rate λ, then X ~ Pois(λ) and:

•
$$S_X = \{0, 1, 2, \cdots\}$$

• $p_X(k) = \begin{cases} e^{-\lambda} \cdot \frac{\lambda^k}{k!} & \text{if } k = 0, 1, 2, \cdots \\ 0 & \text{otherwise} \end{cases}$
• $\mathbb{E}[X] = \lambda$
• $Var(X) = \lambda$

- Another very useful property: if arrivals occur according to a Poisson Process with rate λ , then the number of arrivals in an interval of length *t* follows the Pois($\lambda \cdot t$) distribution.
 - Intuitively, this makes sense: if cars arrive at an average rate of 2 per minute, then the average number of cars arriving in a 30-second interval should be 1.

Example

Suppose calls arrive at a call center according to a Poisson Process with an average rate of 2 calls per minute.

- (a) What is the probability of observing exactly 2 calls between 1pm and 1:01pm?
- (b) What is the expected number of calls arriving between 2pm and 2:10pm?

Part(a)

• Let X denote the number of calls arriving between 1pm and 1:01pm. Then $X \sim \text{Pois}(2)$ and

$$\mathbb{P}(X=2) = e^{-2} \cdot \frac{2^2}{2!}$$

Part(b)

• Let Y denote the number of calls arriving between 2:00pm and 2:10pm. Since there are 10 minutes between 2:00pm and 2:10pm we have $Y \sim Pois(2 \cdot 10) = 20$ and so

$$\mathbb{E}[Y] = 20$$

Leadup

• With Poisson Point Processes, drawing a timeline can often be very useful:

- N_[0,t]; number of arrivals in [0, t].
 - Discrete; N_[0,t] ~ Pois(λt)
- T_{ii} time between $(i-1)^{\text{th}}$ and i^{th} arrivals. Sometimes called interarrival times.
 - State space: S_{T_i} = [0,∞)
 So, T_i is continuous!