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Where We’ve Been

• Axioms of Probability, Probability Spaces, Counting• Conditional Probabilities, independence, etc.• Basics of Random Variables (classification, p.m.f., c.m.f., moments)• Discrete distributions
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Continuous Random Variables



Recap of RV’s

• Let’s recap what we know about random variables.• They map from Ω to R• The state space is defined to be the image of Ω, and we classify random variablesbased on the cardinality of their state space• One fact that I didn’t explicitly mention is that
P(a ≤ X ≤ b) = FX (b) − FX (a)
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Continuous Random Variable

• The construction of continuous random variables is a bit funky.• We actually start with the fourth point above: namely, if FX (x) := P(X ≤ x) then
P(a ≤ X ≤ b) = FX (b) − FX (a).• Remember that

FX (x) := P(X ≤ x) = P({ω ∈ Ω : X (ω) ≤ x})
• So, if we have a probability space (Ω, F ,P) then we can construct FX (x) veryeasily.• It turns out that, under certain conditions, we have the existence of a function

fX (x) that obeys the following key property:
ż b

a
fX (x) dx = FX (b) − FX (a)

• It further turns out that this function fX (x) must obey two properties:1. fX (x) ≥ 0 for all x ∈ R2. ş

R
fX (x) dx = 1• Such a function fX (x) is called a probability density function (p.d.f.).• If it helps, you can think of a p.d.f. as a continuous analog of the p.m.f., but be careful;

fX (x) does NOT represent a probability, whereas pX (k) does. The p.d.f. is a purelymathematical construction.
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Properties

• E[X ] := ż

R

xfX (x) dx
• E[g (X )] = ż

R

g (x)fX (x) dx
• FX (x) = ż x

−∞
fX (t) dt =⇒ fX (x) = ddx FX (x)

• Var(X ) := E{[X −E(X )]2} = E[X 2] − [E(X )]2
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Comparison of Discrete and Continuous Random Variables

Discrete Continuous

probability mass function (p.m.f.) probability density function (p.d.f.)
pX (x) := P(X = x) fX (x)
∀x 0 ≤ pX (x) ≤ 1 ∀x f (x) ≥ 0

∑
all x pX (x) = 1

ż ∞

−∞
fX (x) dx = 1

Cumulative Distribution Function (C.D.F.)
FX (x) := P(X ≤ x)

Discrete Continuous

FX (x) = ∑
y≤x

pX (y ) FX (x) = ż x

−∞
fX (y ) dy

Continuous Random Variables Continuous Distributions Poisson Process, Revisited6



Comparison of Discrete and Continuous Random Variables

Expected Value
E(X ) = µX

Discrete Continuous

E(X ) = ∑
all x xpX (x) E(X ) = ż ∞

−∞
xfX (x) dx

E[g (X )] = ∑
all x g (x)pX (x) E[g (X )] = ż ∞

−∞
g (x)fX (x) dx

Variance
Var(X ) = σ2

X = E [(X − µX )2] = E(X 2) − [E(X )]2
Discrete Continuous

Var(X ) = ∑
all x(x − µX )2pX (x)

= ∑
all x x

2p(x) − [E(X )]2
Var(X ) = ż ∞

−∞
(x − µX )2fX (x) dx

= [
ż

−∞
x2fX (x) dx]

− [E(X )]2
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Example (Chalkboard)

Suppose X is a random variable that has p.d.f. given by
fX (x) = {

cx if x ∈ [0, 1]
0 otherwise

where c > 0 is an as-of-yet undetermined constant.
(a) What is the value of c?(b) Compiute P(X = 0.5).(c) Compute P(X ∈ [0.25, 0.75])(d) Compute E[X ](e) Compute E [

1
X

]
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Constructing a P.D.F.

• Let’s go through an example of how to construct a p.d.f.• First, let’s start off with a new probability measure: if Ω = [a, b] it turns out that
P(A) = length(A)

b − ais in fact a valid probability measure.• Then, if we take the probability space ([a, b], F , P) where P is defined as above,and if we have a random variable X : [a, b] → R then
FX (x) = P([a, x ]) = length([a, x ])

b − a
= x − a

b − aprovided, of course, that x ∈ [a, b]. Therefore, if x ∈ [a, b] we have
FX (x) = x − a

b − a
=⇒ fX (x) = ddx ( x − a

b − a

) = 1

b − a• If x /∈ [a, b], we can see that fX (x) = 0 and so
fX (x) =


1

b − a
if x ∈ [a, b]

0 otherwise
• This is in fact the p.d.f. of the so-called Uniform distribution: X ∼ Unif[a, b]
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Continuous Distributions

• Just like we had discrete distributions, we also have continuous distributions aswell.• Good news: I won’t expect you to derive p.d.f.’s from probability measures like wedid on the previous slide. From here on out I’ll just give the p.d.f. (or c.d.f.).
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Exponential Distribution

• If X ∼ Exp(λ), then
fX (x) = {

λe−λx if x ≥ 0

0 otherwise
• E[X ] = 1

λ• Var(X ) = 1

λ2

• FX (x) = {
1 − e−λx if x ≥ 0

0 otherwise

x

fX (x)

λ

E(X )
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Gamma Distribution

• If X ∼ Gamma(r , λ), then
fX (x) =


λrΓ(r ) · x r−1e−λx if x ≥ 0

0 otherwisewhere Γ(r ) denotes the Gamma Function:

Γ(r ) := ż ∞

0
x r−1e−x dx

• E[X ] = r

λ• Var(X ) = r

λ2• Note that the Gamma(1, λ) distribution is equivalent to the Exp(λ) distribution

x

fX (x)

E(X )
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Memorylessness

• It turns out that the Exponential Distribution actually possesses a very specialproperty:
Definition: Memorylessness

A distribution is said to possess the memorylessness property (or, equivalently,that the distribution is memoryless) if for s, t > 0

P(X > t + s | X > t) = P(X > s)
where X is a random variable that follows the distribution in question.

• Here’s one way to interpret memorylessness: say X models the lifetime of anelectrical component. The memorylessness property says: given that thecomponent has functioned for t units of time, the conditional probability that itworks for an additional s units of time is is the same as the unconditionalprobability that the original component functions for s units of time.• That is, regardless of how long the component has functioned the distribution of theremaining lifetime is the same as the distribution of the original (unconditional) lifetime;the lifetime continually renews itself.
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Memorylessness

Theorem

The Exponential Distribution is memoryless.
Proof.• Let X ∼ Exp(λ).• Then

P(X ≥ s) = ż ∞

s
λe−λx dx = e−λs

• Additionally,
P(X ≥ t + s | X ≥ t) = P({X ≥ t + s} ∩ {X ≥ t})

P(X ≥ t)
• For the numerator: note that if X ≥ t + s then we automatically have X ≥ t; thatis

{X ≥ t + s} ⊆ {X ≥ t}and so
P({X ≥ t + s} ∩ {X ≥ t}) = P(X ≥ t + s) = ż ∞

t+s
λe−λx dx = e−λ(t+s)
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Memorylessness

Theorem

The Exponential Distribution is memoryless.
Proof.• Therefore,

P(X ≥ t + s | X ≥ t) = e−λ(t+s)
e−λt = e−λs · e−λt

e−λt = e−λs = P(X ≥ s)
which completes the proof.

• It can be shown that the Exponential distribution is the only memorylesscontinuous distribution.• Additionally, it can be shown that the Geometric distribution is the onlymemoryless discrete distribution.
Continuous Random Variables Continuous Distributions Poisson Process, Revisited16



Normal (Gaussian) Distribution

• If X ∼ N (µ, σ2), then
fX (x) = 1√

2π · σ2
· exp {

− 1

2σ2
(x − µ)2}

• E[X ] = µ• Var(X ) = σ2

µ

σ σ

µ: mean
σ : standard deviation
X ∼ N (µ, σ2)
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Standard Normal Distribution

• If Z ∼ N (0, 1), we say X follows ths standard normal distribution. Note that:• fZ (z) =: φ(z) := 1√
2π

e− 1
2 z2

• E[X ] = 0, Var(X ) = 1• The c.d.f. of the standard normal distribution arises so frequently, we give it aname: Φ(·). In other words,
Φ(x) := ż x

−∞

1√
2π

e− 1
2 z

2 dz
• There exist lookup tables for Φ(z); see the next slide.

Fact: Standardization

• If X ∼ N (µ, σ2) then Z := (
X−µ

σ

)
∼ N (0, 1). The act of subtracting themean and dividing by the standard deviation is called standardization.• If Z ∼ N (0, 1) and if σ > 0, then X := (σZ + µ) ∼ N (µ, σ2)
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Example

If X ∼ N (1, 4), compute P(X ≥ 2). Leave your answer in terms of Φ, the standard
normal c.d.f.

P(X ≥ 2) = P(
X − 1√

4
≥ 2 − 1√

4

) = P(
X − 1

2
≥ 1

2

)
= 1 −P

(
X − 1

2
≤ 1

2

) = 1 − Φ (
1

2

)

Fact

Φ(−z) = 1 − Φ(z)
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Normal Lookup Tables

• You might have noticed that Φ(x) doesn’t have a closed-form expression. This iswhy we need to use either computer softwares or lookup tables to obtain valuesof Φ.• Here is how we can use a lookup table. Suppose We want to find Φ(0.34)
0.34

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.070.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.52790.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.56750.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.60640.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.64430.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.68080.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.71570.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.74860.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.77940.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.3023 0.8051 0.80780.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.85771.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.87901.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.89801.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.91471.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.92921.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.94181.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525
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Normal Lookup Tables

• Most tables only give values for z > 0. How would I find, say, Φ(−1)? Use theproperty Φ(−z) = 1 − Φ(z)!
• As practice, find Φ(1.24), Φ(3.0), and Φ(−2.33).
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Percentiles

Definition: Percentile

The pth percentile (sometimes called the pth quantile) of a distribution is de-fined to be the value πp such that P(X ≤ πp ) = p, where X is a randomvariable that follows the distribution in question.
• What other name do we give to the 50th percentile? The Median.
• So, to find the pth percentile we solve the equation FX (πp ) = p.• This is why the inverse of the c.d.f. is sometimes called the quantile function.• Example: quantile function of the Exponential distribution.• Example: 75th percentile of the standard normal distribution.
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Poisson Process, Revisited

• Alright, let’s return to our Poisson Point Process again:
N[0,t]

time
t

× × ×

T1 T2
T3

• We are finally in a position to find the distribution of the interarrival times.(Spoiler: it will turn out to be a distribution we already know!)• In words, the event {T1 ≥ t} means “the first arrival occurred after time t .”Equivalently, what does this say about the number of arrivals in the interval[0, t ]? There were zero!• So, what we see is
P(T1 ≥ t) = P(N[0,t ] = 0)• We know the distribution of N[0,t ]; it is Pois(λ · t).• Therefore,

P(T1 ≥ t) = e−λt · (λt)0
0! = e−λt =⇒ FT1 (t) = 1 − e−λt
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Poisson Process, Revisited

• Yup, that’s right: T1 ∼ Exp(λ)
• In fact, with a bit of work, one can show that Ti ∼ Exp(λ) for all i , and that the

Ti ’s are independent. (Loosely speaking, this relates to the memorylessnessproperty along with the fact that the number of arrivals in nonoverlappingintervals were assumed to be independent random variables)
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Poisson Process, Revisited

• Let’s take this even further.
N[0,t]

time
t

× × ×

T1 T2
T3

T0,2

T0,3

• These new times are called the arrival times; in other words, T0,2 denotes the“time until the 2nd arrival”
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Poisson Process, Revisited

• Let’s derive the distribution of T0,2.• Again, we examine P(T0,2 ≥ t); the event {T0,2 ≥ t} means the second arrivaloccurred at a time later than t meaning N[0,t ] ≤ 1. Therefore
P(T0,2 ≥ t) = e−λt + (λt)e−λt

• Equivalently,
FT0,2 (t) = 1 − e−λt − (λt)e−λt

and so, differentiating w.r.t. t , we find
fT0,2 (t) = λe−λt −

[
λe−λt − λ2te−λt

]
= λ2te−λt

= λ2Γ(2) t2−1e−λt

• That is, T0,2 ∼ Gamma(2, λ) !• It turns out that T0,n ∼ Gamma(n, λ); in other words, the time of arrival of the
ntharrival is distributed as a Gamma(n, λ) distribution.• Additionally, it also turns out that the distribution of the time between the nthand (n + k)th arrivals is Gamma(k, λ).
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Poisson Process, Revisited

• So, here are some summarizing facts. If arrivals follow a Poisson Point Processwith rate λ, then:• The number of arrivals in a time interval of length t is distributed according to aPois(λt) distribution.• The interarrival times are distributed as Exp(λ) (i.e. the distribution of the timesbetween consecutive arrivals)• The arrival times follow the Gamma distribution; specifically, the distribution of the timebetween the nth and (n + k)th arrivals is Gamma(k, λ).
• You will discuss Poisson Processes in much greater detail in PSTAT 160B.
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Example

Suppose calls arrive at a call center according to a Poisson Process with an averagerate of 2 calls per minute.
(a) What is the probability of observing exactly 2 calls between 1pm and 1:01pm?(Already answered)(b) What is the expected number of calls arriving between 2pm and 2:10pm?(Already answered)(c) What is the distribution of the time (in minutes) until the 1st call?(d) On average, what is the length of time (in minutes) between the 3rd and 5th calls?

Part (c): Exp(2)
Part (d): Let T denote the time between the 3rd and 5th calls; then T ∼ Gamma(2, λ)

E[T ] = 2

2
= 1 minute
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