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Where We've Been

e Axioms of Probability, Probability Spaces, Counting

e Conditional Probabilities, independence, etc.

e Basics of Random Variables (classification, p.m.f, c.m.f, moments)
e Discrete Distributions

e Continuous Distributions
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Notational Convenience

e First, it will be helpful to introduce some new notation:

Definition: Indicators

The indicator function associated with a particular event A is defined as

1a(w) 1 fweA
Alw) =
0 ifwe AL

Often, the (w) will be dropped and we will simply write

1 ifA
1=
0 otherwise

e For instance, we can write the p.d.f. of the exponential distribution quite
succinctly as

fx(x) = 2e™ - Les0
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Transformations of Random
Variables



Introduction

e Consider a probability space (Q, F,P) and a random variable X : Q — R.
e Consider now a function g: R — R.

e Recall from precauclus that (g o X) is itself a function.

e Specifically, (g o X): Q — R; that is, (g o X) is a random variable!

e Often times we will denote this random variable by g(X); for instance, we will
start with a random variable X and define a new random variable Y := g(X). In
other words, Y is a transformation of X.
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Introduction

e Functions of random variables? That sounds awfully abstract...

e Well, suppose T¢ measures the temperature as measured in Centigrade of some
town, and that T¢ ~ N(0, 3). We may ask ourselves: “what is the distribution of
temperatures as measured in Fahrenheit?” That is, if Tr measures the

temperature in Fahrenheit then
9
Ter=g(Tc) where g(t)= gt + 32

and we seek the distribution of Tk.
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Reference Example 2

Reference Example:

A particle is fired from the origin into the first quadrant such that the angle of
trajectory (as measured w.r.t. the x—axis) is uniformly distributed. The particle travels
unobstructed until it collides with circlar ring, placed at a constant radius of 1 away
from the origin. We let Y denote the y—coordinate of the point of collision (see figure

below).

> X

What is the distribution of Y?
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The Setup:

e Let © denote the angle of trajectory; then © ~ Unif[0, 7f].

e We can see that y
sin(@) = T = Y =sin(©)

e So, we have Y = g(0©) where g(t) = sin(t), and we want the distribution of Y.
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Expectation?

e Finding E[Y] is relatively easy:
E[Y] = E[sin(0)]

= Jm sin(6) - fo(0) do

—0Q
h
= f sin(0) - 2 de
0 Jt
“p
= 2 sin(6) d6
T Jo

SEEN)

% [cos(0) — cos(7f)] =

e Okay... now what?
o Y ~ N 1)?
o Y ~ Exp(7R)?

e The point is: expectation isn’t enough!
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A Question

e This leads us to a broader question: what information is enough for us to
determine the distribution of Y7

e There are at least two answers to this question. The answer we will discuss
today is: “pmf’s and pdf's”

e The other answer will be discussed next week, and will lead us to something called
Moment-Generating Functions. Again, more on that later.

e What | mean is this: if we can somehow find that the probability density function
(p.d.f.) of Y is given by

fy(y) = (g) e )

then | can immediately say Y ~ Exp(7k).
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The Question

e So, here is our task: given a random variable X that has p.d.f. fx(x), we seek to

find the p.d.f. fy(y) of the random variable Y := g(X).

(@ The Change of Variable Formula
Suppose X is a random variable with p.df. fx(x) and state space Sx. Further
suppose g is a function that is bijective over Sx, and that Y := g(X). Then the
p.df. of Y is given by

friy) = fx [ (V)] - ‘%g’l(y)’

o We'll prove this in a bit.
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Reference Example (again)

e Let's return to our reference example:

O ~ Unif(0, 7k)
g(t) := sin(t)
Y :=g(0)
e First, we can check that Sg = [0, 7] and g(t) is indeed bijective over Sg with

inverse given by
g (y) = arcsin(y)

e Thus, by calculus:

1
11—y

S e
g (y)’f‘dy

d
dy

arcsin(y)‘ =

2

Vi7"

|-
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Reference Example (again)

e Hence:

1
fy(y) = fo(arcsiny) - =
-y
B % if 0 <arcsiny < 7p 1
0 otherwise

1—y2

¢%7 fo<y<1
/1~y
0 otherwise

e By the way, Sy = g(Se).

e We can also verify our expectation computation from before:

1
2y 2
EY:f————d:f/
(Y] OﬂT?ﬁy =

Transformations of Random Variables



Example (Chalkboard)

Suppose X has p.d.f. fx(x) and suppose Y = aX + b for a, b > 0. Derive an expression
[in terms of fx(x), a, and b] for the p.d.f. fy(y) of Y.
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Example (cont’d)
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Non-bijective Functions

e Note that the Change of Variable formula requires g to be bijective over the state
space of X. What do we do if this is not the case? For instance, suppose
X ~N(0,1) and Y = X2.

Firstly, why does the Change of Variable formula not work for non-bijective

functions?

e Answer: invertibility. Recall (from Precalculus) that inverting a function is
equivalent to performing a reflection about the line y = x. Thus, if a function f(x)
violates the horizontal line test [ie. fails to be bijective] its reflection about y = x
will fail the vertical line test and not even be a function!

f(x) f(x)

A
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Non-bijective Functions (cont’d)

e But, a fact that we can leverage is: restrictions of non-bijective functions can be
bijective!

e For instance, f(x) = x> when restricted to only x € (—o0, 0] is bijective; similarly,
f(x) = x? when restricted to only x € (0, c0) is also bijective:

f(x) f~1(x)
A /, /’
’ A 4
e 4
4 e
4 4
4 X ,/ X
e 4
4 e
4 4 :
4 4
e e
d d
f~1(x)
.
e
/,
4
7
7 X
4
e
4
4 4
e e
d d
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Non-bijective Functions (cont’d)

e So, let us return to our problem of finding the density of Y := g(X) when g is not
bijective over Sx.

e Our approach is as follows:
1. Partition Sx into smaller subintervals SQ such that g is bijective over each SQ,
2. Apply the Change of Variable Formula to each S)(é), to obtain a series of partial p.d.f’s
f)(/')(y) valid over Sﬁé)
3. Combine these partial p.d.f's into a single piecewise-defined p.d.f. through addition.
4. CAVEAT: Only add p.df’s that are valid over the same domain. If you obtain two
sub-pdf’s f,((l)(y) and f",z) (v) that ar valid over two separate domains, say 5',}) and 59,
then do not add these but rather simply combine them into the same p.d.f. using
piecewise notation:
1 n 1
Ry) iy esy

(2) f (2)
frly)=4f' ) ttyesSy

This is important for HWO05 question 2.
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Worked-Out Example

Worked-Out Example: If X ~ N(0,1), find the distribution of Y := X2.

e The state space of X is Sx = IR; clearly g(x) = x? is not bijective over Sx. Thus,
we partition Sx into
5&1) = (—o00,0], Sg?) := (0, )

because g(x) = x2 is bijective over SQ) and S)((Z) respectively.

Transformations of Random Variables



Worked-Out Example (cont’d)

e For x € S&l) we have g71(y) = —VY:

g(y) g'(y)
A a .,
e d
,’, A ,’,
4 e
// /,
4 4
d > y e > y
4 4
7 e
e e
/, /,
4 4
/,’ /,’
Thus,
d 4 1 1
)| = - = 5
dy 2y 2.y
and so

F ) = pl—vy) - f
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Worked-Out Example (cont’d)

e For x € S;?) we have g71(y) = VY

g(y) g'(y)
A a .,
e d
Al A &
// /,
7 4
d > y e > y
4 4
7 e
e e
/, /,
4 4
/,’ /,’
Thus,
d 4 .
vl [nsl -2
and so

F2(y) = ¢(vy) - f
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Worked-Out Example (cont’d)

e So, putting everything together,

friy) = Ry) + f‘2’< )

= ¢(—Vy)- ﬁ + (V) - %
—d(ﬁ)~2\iﬁ+(/><m 2\%
- o)

1 1 -y

B y 27
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Worked-Out Example (cont’d)

Worked-Out Example: If X ~ N(0,1), find the distribution of Y := X2.

e State Space?

® Sy(y) = g(5x).

e So, in our example, Sy = (R)? = [0, c0) meaning

_1
e 2V - lyys0)

e (This is a special case of the so-called x? distribution, a very useful distribution
you will return to throughout your Statistics Careers!)
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The C.D.F. Method

e Now, there is another approach to identifying the distributions of transformed

random variable. It stems from the following fact:

CDF's uniquely determine distributions. In other words, if X and Y are random
variables with c.d.f’s Fx and Fy(y) respectively, then Fx(t) = Fy(t) for all y

d
implies that X and Y follow the same distribution [sometimes written X = Y]
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The C.D.F. Method

e To see this in action, let’s return to our x? example.

e The c.d.f of Y is given by
Fy(y) =P(Y <y) =P(X> <y) = P(IX| < \/y) = P(—/y < X < \/y)
e Since the c.d.f of X is simply ®(-), we have
Fy(y) = ®(/y) = ®(=VYy)
which can be further cleaned up by noting

P(—yy) = 1= O(y)

Therefore,
Fy(y)=2%(y) -1

e To find the p.d.f. of Y we differentiate and apply the chain rule:

Frly) = [2<I)(f—1}—2 1f b(v/y) = } \/%e—%w

[recall that ¢, the lowercase version of ®, denotes the standard normal density]
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Another Example

Let X ~ Exp(A) and Y = X + ¢ for some ¢ > 0. Find the p.d.f. of Y using the c.d.f.
method

e First note Sy = [c, 00)

e So, for y € [c,00) we have that the c.df. of Y at y is
Fy(y)=P(X+c<y)=P(X<y—c)=1—e

e Differentiating yields

meaning, putting everything together,

Lo=Aly=c) ify >
e ify>c
friy)=17% i
0 otherwise

which is a special case of what is sometimes known as the two-parameter
exponential distribution.
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Paying our Dues

e Finally, it is time to pay one of our dues and prove something we said we'd prove

Theorem: Standardization

If X ~ N (4, 0%) and Z := (X;“ ) then Z ~ N(0,1)

Proof.

e let's use the change of variable formula.

t—p
gt)=—F = gl)=ot+y =

Let) =0

dt
e So

fz(z) =0 ﬁ - exp {75 ([UZ+H]*LI)2}

e Once the dust settles, you can see that fz(z) = ¢(z) thereby showing Z ~ N(0, 1)

O
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Proving the Change of Variable Formula

e There are two cases we must consider: when g is strictly increasing and when g
is strictly decreasing.

1

e If g is strictly increasing, then g=" will also be strictly increasing and its

derivative will be positive.

e Now, let’s find the p.df. of Y := g(X) using the c.d.f. method:
Fry) =P(Y <y) =P(g(X) < y) = P(X < g *(y)) = Fx [¢ (Y]

Note that we are guaranteed the existence of g=! by our bijectivity assumption
on g.
e Now, we differentiate w.r.t. y:
d d

fry) = 5 Fx[e7' 0] = Kle7 )] 5 &

_1(
dy dy

)

where we have applied the chain rule.
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Proving the Change of Variable Formula

The other case to consider is when g is strictly decreasing.

1

e If g is strictly decreasing, then g7+ will also be strictly decreasing and its

derivative will be negative.

Now, let’s find the p.d.f. of Y := g(X) using the c.d.f. method:
Fy(y) =P(Y <y)=P(gX) < y) =P(X 2 g '(y)) =1 - Fx[g ()]

Key Point: We had to flip the sign of the inequality because we applied a
decreasing function to both sides!

Now, we differentiate w.r.t. y:

fy(y) = % {1-Fx[e ']} = &g )] [—ig’l(y)]

where we have again applied the chain rule.
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Proving the Change of Variable Formula

e So, in piecewise-defined form, we have

fxlg~t(v)]- J'yg‘l(y)] if 87 (y)>0

£ =
" et [~ t] @ et <o

dely] U fein >0
d

xlg )]
A2 ~ &) W de <o

i'g*(y)‘

= fxlg ' (y)]- dy

which is precisely the Change of Variable formula.
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