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Where We’ve Been

• Axioms of Probability, Probability Spaces, Counting• Conditional Probabilities, independence, etc.• Basics of Random Variables (classification, p.m.f., c.m.f., moments)• Discrete Distributions• Continuous Distributions
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Notational Convenience

• First, it will be helpful to introduce some new notation:
Definition: Indicators

The indicator function associated with a particular event A is defined as
1A(ω) = {

1 if ω ∈ A

0 if ω ∈ A∁

Often, the (ω) will be dropped and we will simply write
1A = {

1 if A
0 otherwise

• For instance, we can write the p.d.f. of the exponential distribution quitesuccinctly as
fX (x) = λe−λx · 1{x≥0}
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Transformations of Random
Variables



Introduction

• Consider a probability space (Ω, F ,P) and a random variable X : Ω → R.• Consider now a function g : R → R.• Recall from precauclus that (g ◦ X ) is itself a function.• Specifically, (g ◦ X ) : Ω → R; that is, (g ◦ X ) is a random variable!• Often times we will denote this random variable by g (X ); for instance, we willstart with a random variable X and define a new random variable Y := g (X ). Inother words, Y is a transformation of X .
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Introduction

• Functions of random variables? That sounds awfully abstract...• Well, suppose TC measures the temperature as measured in Centigrade of sometown, and that TC ∼ N (0, 3). We may ask ourselves: “what is the distribution oftemperatures as measured in Fahrenheit?” That is, if TF measures thetemperature in Fahrenheit then
TF = g (TC ) where g (t) = 9

5
t + 32

and we seek the distribution of TF .

Transformations of Random Variables5



Reference Example 2

Reference Example:A particle is fired from the origin into the first quadrant such that the angle oftrajectory (as measured w.r.t. the x−axis) is uniformly distributed. The particle travelsunobstructed until it collides with circlar ring, placed at a constant radius of 1 awayfrom the origin. We let Y denote the y−coordinate of the point of collision (see figurebelow).

x

y

Θ

Y

1

1

What is the distribution of Y ?
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The Setup:

• Let Θ denote the angle of trajectory; then Θ ∼ Unif[0, π/2].• We can see that sin(Θ) = Y

1
=⇒ Y = sin(Θ)

• So, we have Y = g (Θ) where g (t) = sin(t), and we want the distribution of Y .
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Expectation?

• Finding E[Y ] is relatively easy:
E[Y ] = E[sin(Θ)]

= ż ∞

−∞
sin(θ) · fΘ(θ) dθ

= ż π/2

0
sin(θ) · 2

π dθ

= 2

π

ż π/2

0
sin(θ) dθ

= 2

π [cos(0) − cos(π/2)] = 2

π• Okay.... now what?• Y ∼ N (2/π, 1)?• Y ∼ Exp(π/2)?• The point is: expectation isn’t enough!
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A Question

• This leads us to a broader question: what information is enough for us todetermine the distribution of Y ?• There are at least two answers to this question. The answer we will discusstoday is: “pmf’s and pdf’s.”• The other answer will be discussed next week, and will lead us to something calledMoment-Generating Functions. Again, more on that later.• What I mean is this: if we can somehow find that the probability density function(p.d.f.) of Y is given by
fY (y ) = ( π

2

)
e− yπ

2 · 1{y≥0}then I can immediately say Y ∼ Exp(π/2).
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The Question

• So, here is our task: given a random variable X that has p.d.f. fX (x), we seek tofind the p.d.f. fY (y ) of the random variable Y := g (X ).
 The Change of Variable Formula

Suppose X is a random variable with p.d.f. fX (x) and state space SX . Furthersuppose g is a function that is bijective over SX , and that Y := g (X ). Then thep.d.f. of Y is given by
fY (y ) = fX

[
g−1(y )] ·

∣∣∣∣ ddy g−1(y )∣∣∣∣
• We’ll prove this in a bit.
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Reference Example (again)

• Let’s return to our reference example:
Θ ∼ Unif(0, π/2)

g (t) := sin(t)
Y := g (Θ)

• First, we can check that SΘ = [0, π/2] and g (t) is indeed bijective over SΘ withinverse given by
g−1(y ) = arcsin(y )• Thus, by calculus:∣∣∣∣ ddy g−1(y )∣∣∣∣ = ∣∣∣∣ ddy arcsin(y )∣∣∣∣ = ∣∣∣∣∣ 1√

1 − y2

∣∣∣∣∣ = 1√
1 − y2
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Reference Example (again)

• Hence:
fY (y ) = fΘ(arcsin y ) · 1√

1 − y2

= {
2
π if 0 ≤ arcsin y ≤ π/2
0 otherwise · 1√

1 − y2

=
 2

π
√

1−y2
if 0 ≤ y ≤ 1

0 otherwise
• By the way, SY = g (SΘ).• We can also verify our expectation computation from before:

E[Y ] = ż 1

0

2y

π
√

1 − y2
dy = 2

π ✓
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Example (Chalkboard)

Suppose X has p.d.f. fX (x) and suppose Y = aX + b for a, b > 0. Derive an expression[in terms of fX (x), a, and b] for the p.d.f. fY (y ) of Y .
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Example (cont’d)
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Non-bijective Functions

• Note that the Change of Variable formula requires g to be bijective over the statespace of X . What do we do if this is not the case? For instance, suppose
X ∼ N (0, 1) and Y = X 2.• Firstly, why does the Change of Variable formula not work for non-bijectivefunctions?• Answer: invertibility. Recall (from Precalculus) that inverting a function isequivalent to performing a reflection about the line y = x . Thus, if a function f (x)violates the horizontal line test [i.e. fails to be bijective] its reflection about y = xwill fail the vertical line test and not even be a function!

x

f (x)

x

f −1(x)
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Non-bijective Functions (cont’d)

• But, a fact that we can leverage is: restrictions of non-bijective functions can bebijective!• For instance, f (x) = x2 when restricted to only x ∈ (−∞, 0] is bijective; similarly,
f (x) = x2 when restricted to only x ∈ (0, ∞) is also bijective:

x

f (x)

x

f −1(x)

x

f (x)

x

f −1(x)
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Non-bijective Functions (cont’d)

• So, let us return to our problem of finding the density of Y := g (X ) when g is notbijective over SX .• Our approach is as follows:1. Partition SX into smaller subintervals S
(i )
X such that g is bijective over each S

(i )
X .2. Apply the Change of Variable Formula to each S

(i )
X , to obtain a series of partial p.d.f.’s

f
(i )
Y (y ) valid over S (i )

X3. Combine these partial p.d.f.’s into a single piecewise-defined p.d.f. through addition.4. CAVEAT: Only add p.d.f’s that are valid over the same domain. If you obtain twosub-pdf’s f
(1)
Y (y ) and f

(2)
Y (y ) that ar valid over two separate domains, say S

(1)
Y and S

(2)
Y ,then do not add these but rather simply combine them into the same p.d.f. usingpiecewise notation:

fY (y ) =

f

(1)
Y (y ) if y ∈ S

(1)
Y

f
(2)
Y (y ) if y ∈ S

(2)
Y...This is important for HW05 question 2.
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Worked-Out Example

Worked-Out Example: If X ∼ N (0, 1), find the distribution of Y := X 2.
• The state space of X is SX = R; clearly g (x) = x2 is not bijective over SX . Thus,we partition SX into

S
(1)
X := (−∞, 0] , S

(2)
X := (0, ∞)

because g (x) = x2 is bijective over S (1)
X and S

(2)
X respectively.
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Worked-Out Example (cont’d)

• For x ∈ S
(1)
X we have g−1(y ) = −√

y :

y

g(y)

y

g−1(y)

Thus, ∣∣∣∣ ddy g−1(y )∣∣∣∣ = ∣∣∣∣− 1

2
√
y

∣∣∣∣ = 1

2
√
yand so

f
(1)
Y (y ) = φ(−√

y ) · 1

2
√
y
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Worked-Out Example (cont’d)

• For x ∈ S
(2)
X we have g−1(y ) = √

y :

y

g(y)

y

g−1(y)

Thus, ∣∣∣∣ ddy g−1(y )∣∣∣∣ = ∣∣∣∣ 1

2
√
y

∣∣∣∣ = 1

2
√
yand so

f
(2)
Y (y ) = φ(√y ) · 1

2
√
y
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Worked-Out Example (cont’d)

• So, putting everything together,
fY (y ) = f

(1)
Y (y ) + f

(2)
Y (y )

= φ(−√
y ) · 1

2
√
y

+ φ(√y ) · 1

2
√
y

= φ(√y ) · 1

2
√
y

+ φ(√y ) · 1

2
√
y

= 1
√
y

φ(√y )
= 1

√
y

· 1√
2π

e− 1
2 y
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Worked-Out Example (cont’d)

Worked-Out Example: If X ∼ N (0, 1), find the distribution of Y := X 2.
• State Space?• SY (y ) = g (SX ).• So, in our example, SY = (R)2 = [0, ∞) meaning

fY (y ) = 1
√
y

· 1√
2π

e− 1
2 y · 1{y≥0}

• (This is a special case of the so-called χ2 distribution, a very useful distributionyou will return to throughout your Statistics Careers!)
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The C.D.F. Method

• Now, there is another approach to identifying the distributions of transformedrandom variable. It stems from the following fact:
Fact

CDF’s uniquely determine distributions. In other words, if X and Y are randomvariables with c.d.f.’s FX and FY (y ) respectively, then FX (t) = FY (t) for all yimplies that X and Y follow the same distribution [sometimes written X
d= Y ]
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The C.D.F. Method

• To see this in action, let’s return to our χ2 example.• The c.d.f. of Y is given by
FY (y ) := P(Y ≤ y ) = P(X 2 ≤ y ) = P(|X | ≤ √

y ) = P(−√
y ≤ X ≤ √

y )
• Since the c.d.f. of X is simply Φ(·), we have

FY (y ) = Φ(√y ) − Φ(−√
y )

which can be further cleaned up by noting
Φ(−√

y ) = 1 − Φ(√y )
Therefore,

FY (y ) = 2Φ(√y ) − 1• To find the p.d.f. of Y we differentiate and apply the chain rule:
fY (y ) = ddy [2Φ(√y ) − 1] = 2 · 1

2
√
y

· φ(√y ) = 1
√
y

· 1√
2π

e− 1
2 (√y )2

[recall that φ, the lowercase version of Φ, denotes the standard normal density]
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Another Example

Let X ∼ Exp(λ) and Y = X + c for some c > 0. Find the p.d.f. of Y using the c.d.f.method
• First note SY = [c, ∞)• So, for y ∈ [c, ∞) we have that the c.d.f. of Y at y is

FY (y ) = P(X + c ≤ y ) = P(X ≤ y − c) = 1 − e−λ(y−c)
• Differentiating yields

fY (y ) = 1

λ e
−λ(y−c)

meaning, putting everything together,
fY (y ) = {

1
λ e

−λ(y−c) if y ≥ c

0 otherwise
which is a special case of what is sometimes known as the two-parameter
exponential distribution.
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Paying our Dues

• Finally, it is time to pay one of our dues and prove something we said we’d prove:
Theorem: Standardization

If X ∼ N (µ, σ2) and Z := (
X − µ

σ

), then Z ∼ N (0, 1)
Proof.• Let’s use the change of variable formula.

g (t) = t − µ
σ =⇒ g−1(t) = σt + µ =⇒ ddt g−1(t) = σ

• So
fZ (z) = σ · 1√

2π · σ
· exp {

− 1

2σ2
([σz + µ] − µ)2}

• Once the dust settles, you can see that fZ (z) = φ(z) thereby showing Z ∼ N (0, 1).
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Proving the Change of Variable Formula

• There are two cases we must consider: when g is strictly increasing and when gis strictly decreasing.• If g is strictly increasing, then g−1 will also be strictly increasing and itsderivative will be positive.• Now, let’s find the p.d.f. of Y := g (X ) using the c.d.f. method:
FY (y ) = P(Y ≤ y ) = P(g (X ) ≤ y ) = P(X ≤ g−1(y )) = FX

[
g−1(y )]

Note that we are guaranteed the existence of g−1 by our bijectivity assumptionon g .• Now, we differentiate w.r.t. y :
fY (y ) = ddy FX

[
g−1(y )] = fX [g−1(y )] · ddy g−1(y )

where we have applied the chain rule.
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Proving the Change of Variable Formula

• The other case to consider is when g is strictly decreasing.• If g is strictly decreasing, then g−1 will also be strictly decreasing and itsderivative will be negative.• Now, let’s find the p.d.f. of Y := g (X ) using the c.d.f. method:
FY (y ) = P(Y ≤ y ) = P(g (X ) ≤ y ) = P(X ≥ g−1(y )) = 1 − FX

[
g−1(y )]

Key Point: We had to flip the sign of the inequality because we applied adecreasing function to both sides!• Now, we differentiate w.r.t. y :
fY (y ) = ddy {

1 − FX

[
g−1(y )]} = fX [g−1(y )] ·

[
− ddy g−1(y )]

where we have again applied the chain rule.
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Proving the Change of Variable Formula

• So, in piecewise-defined form, we have
fY (y ) =

fX [g−1(y )] ·
[ ddy g−1(y )] if ddy g−1(y ) > 0

fX [g−1(y )] ·
[
− ddy g−1(y )] if ddy g−1(y ) < 0

= fX [g−1(y )] ·


[ ddy g−1(y )] if ddy g−1(y ) > 0[
− ddy g−1(y )] if ddy g−1(y ) < 0

= fX [g−1(y )] ·
∣∣∣∣ ddy g−1(y )∣∣∣∣

which is precisely the Change of Variable formula.
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