7: Double Integral Review

PSTAT 120A: Summer 2022

Ethan P. Marzban
July 12, 2022

University of California, Santa Barbara

Leadup

Single Integrals; Simple Interval

- Geometry of Single Integrals:

Single Integrals; More Complicated Interval

- Geometry of Single Integrals:

$$
\begin{array}{r}
\int_{R} f(x) \mathrm{d} x=\text { Area under } f(x), \\
\text { above the region } \boldsymbol{R}
\end{array}
$$

Bivariate Functions

- The graph of a univariate function f is a one-dimensional curve, lying in \mathbb{R}^{2}.
- What does the graph of a bivariate function, $f(x, y)$ look like?
- A surface, lying in \mathbb{R}^{3}.

Geometry of Double Integrals

- Since single integrals represent the area underneath the graph of a univariate function, it makes sense that a double integral represents the volume underneath the graph of a bivariate function.
- But, as we saw even in the univariate case; the region over which we integrate is important! In fact, with double integrals, often times the region of integration is the most important part of our computations!
- Let's talk a bit about regions.

Regions in \mathbb{R}^{2}

Four Types of Regions

By a "region" in \mathbb{R}^{2}, we mean a subset \mathcal{R} of \mathbb{R}^{2}. This is also sometimes called a "domain," in the context of double integration.

There are 4 different types of regions:

- Type I: y is bounded by two continuous function f_{1} and f_{2} of x, and x is bound on either side by a constant.
- Type II: x is bounded by two continuous function g_{1} and g_{2} of y, and y is bound on either side by a constant.
- Type III: both Type I and Type II
- Type IV: none of the above types.

Four Types of Regions

Type IV: Neither I, II, nor III

More General Regions

Of course, regions will typically be specified in some sort of mathematical format. Since, as I mentioned above, regions are simply subsets, we can use set-builder notation.

For example, a type I region may be expressed as

$$
\mathcal{R}=\left\{(x, y): g_{1}(x) \leq y \leq g_{2}(x), a \leq x \leq b\right\}
$$

Example 1

Example

- As a Type I region,

$$
\begin{gathered}
\mathcal{R}=\left\{(x, y) \in \mathbb{R}^{2}:-\sqrt{1+x} \leq y \leq \sqrt{1+x}\right. \\
-1 \leq x \leq 2\}
\end{gathered}
$$

- As a Type II region,

$$
\begin{gathered}
\mathcal{R}=\left\{(x, y) \in \mathbb{R}^{2}: y^{2}-1 \leq x \leq 2\right. \\
-\sqrt{3} \leq y \leq \sqrt{3}\}
\end{gathered}
$$

Example 2

Example

- As a Type I region,

$$
\mathcal{R}=\left\{(x, y): x^{2}-2 \leq y \leq 2-x^{2},-\sqrt{2} \leq x \leq \sqrt{2}\right\}
$$

- \mathcal{R} cannot be expressed as a single

Type II region, but rather as a union of two type II regions:

$$
\begin{aligned}
\mathcal{R} & =\{(x, y):-\sqrt{2+y} \leq x \leq \sqrt{2+y}, 0 \leq y \leq 2\} \\
& \cup\{(x, y):-\sqrt{2-y} \leq x \leq \sqrt{2-y},-2 \leq y \leq 0\}
\end{aligned}
$$

- Therefore, \mathcal{R} is Type I.

Back to Double Integrals

Interpretation of the Double Integral

We therefore arrive at the following interpretation:

Point

Double integrals represent the volume underneath the portion of the graph of a bivariate function. That is,

$$
\iint_{\mathcal{R}} f(x, y) \mathrm{d} A
$$

represents the volume underneath the portion of the graph of $f(x, y)$ on the domain $\{(x, y):(x, y) \in \mathcal{R}\}$.

Interpretation of the Double Integral

For example, if $\mathcal{R} \subset \mathbb{R}^{2}$ is a rectangle lying in the $x y$-plane, then $\iint_{\mathcal{R}} f(x, y) d y$ represents the volume of the prism with \mathcal{R} as its bottom and $\{f(x, y):(x, y) \in \mathcal{R}\}$ as its top (see figure to the left).

Double Integration over Rectangular Regions

First Result: Fubini's Theorem

Theorem: Fubini's Theorem

Consider the rectangle $\mathfrak{R}=\{(x, y): a \leq x \leq b, c \leq y \leq d\}$ for $a, b, c, d \in \mathbb{R}$. If a function $f(x, y)$ is continuous on \mathfrak{R}, then

$$
\begin{equation*}
\iint_{\mathfrak{R}} f(x, y) \mathrm{d} A=\int_{a}^{b} \int_{c}^{d} f(x, y) \mathrm{d} y \mathrm{~d} x=\int_{c}^{d} \int_{a}^{b} f(x, y) \mathrm{d} x \mathrm{~d} y \tag{1}
\end{equation*}
$$

Sometimes, you will see the shorthand notation

$$
\mathfrak{R}=[a, b] \times[c, d]
$$

to refer to the definition of \Re listed above. (Yup- this is our good friend, the Cartesian Product!)

Order of Integration

Note that one of the expressions in Fubini's theorem has a $\mathrm{d} x \mathrm{~d} y$, and the other has a $\mathrm{d} y \mathrm{~d} x$. The order in which these appear in the integral is sometimes called the order of integration.

This terminology stems from the manner in which we evaluate integrals: when we write, for example,

$$
\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

we mean two things:

1. First evaluate $\int_{a}^{b} f(x, y) d x$, treating y as a constant.
2. Integrate your result from step (1) above over y, letting y range from c to d.

Example 3

Example

If $\Re=[0,1] \times[0,1]$ and $f(x, y)=x+y$, we have

$$
\begin{aligned}
\iint_{\mathfrak{R}} f(x, y) \mathrm{d} A & =\int_{0}^{1} \int_{0}^{1}(x+y) \mathrm{d} x \mathrm{~d} y \\
& =\int_{0}^{1}\left(\int_{0}^{1}(x+y) \mathrm{d} x\right) \mathrm{d} y \\
& =\int_{0}^{1}\left[\frac{1}{2} x^{2}+x y\right]_{x=0}^{x=1} \mathrm{~d} y \\
& =\int_{0}^{1}\left(\frac{1}{2}+y\right) \mathrm{d} y \\
& =\left[\frac{1}{2} y+\frac{1}{2} y^{2}\right]_{y=0}^{y=1}=\frac{1}{2}+\frac{1}{2}=1
\end{aligned}
$$

Second Theorem

Theorem: Theorem 2

Suppose $\mathfrak{R}=[a, b] \times[c, d]$ where a, b, c, and d are constants (i.e. do not depend on x or y). Then

$$
\begin{equation*}
\iint_{\mathfrak{R}}[f(x) g(y)] \mathrm{d} A=\left(\int_{a}^{b} f(x) \mathrm{d} x\right) \cdot\left(\int_{c}^{d} g(y) \mathrm{d} y\right) \tag{2}
\end{equation*}
$$

In other words, if the integrand can be broken into the product of a function depending only on x and a function depending only on y, and if the limits of integration are constant, then the double integral can be evaluated as a product of single integrals.

Example 4

Example

If $\mathfrak{R}=[1,2] \times[3, \pi]$ and $f(x, y)=x^{2} y$, we have

$$
\begin{aligned}
\iint_{\mathfrak{R}} f(x, y) \mathrm{d} A & =\int_{3}^{\pi} \int_{1}^{2} x^{2} y \mathrm{~d} x \mathrm{~d} y \\
& =\left(\int_{1}^{2} x^{2} \mathrm{~d} x\right) \cdot\left(\int_{3}^{\pi} y \mathrm{~d} y\right) \\
& =\left[\frac{1}{3} x^{3}\right]_{x=1}^{x=2} \cdot\left[\frac{1}{2} y^{2}\right]_{y=3}^{y=\pi} \\
& =\frac{1}{3}(8-1) \cdot \frac{1}{2}\left(\pi^{2}-9\right)=\frac{7\left(\pi^{2}-9\right)}{6}
\end{aligned}
$$

Double Integrals over General Regions

Another Theorem

Theorem: Theorem 3

If $\mathcal{D}=\{(x, y): f(y) \leq x \leq g(y), c \leq y \leq d\}$, then

$$
\begin{equation*}
\iint_{\mathcal{D}} f(x, y) \mathrm{d} A=\int_{c}^{d} \int_{f(y)}^{g(y)} f(x, y) \mathrm{d} x \mathrm{~d} y \tag{3}
\end{equation*}
$$

If $\mathcal{D}=\{(x, y): h(x) \leq y \leq \ell(x), a \leq x \leq b\}$, then

$$
\begin{equation*}
\iint_{\mathcal{D}} f(x, y) \mathrm{d} A=\int_{a}^{b} \int_{h(x)}^{\ell(x)} f(x, y) \mathrm{d} y \mathrm{~d} x \tag{4}
\end{equation*}
$$

Example 5

Example

Let \mathcal{R} be

and set $f(x, y)=x y$. If we express \mathcal{R} as a Type II region (as we did at the beginning of Example 1), we may use 4 to write

$$
\begin{aligned}
\iint_{\mathcal{R}} f(x, y) \mathrm{d} A & =\int_{-1}^{2} \int_{-\sqrt{1+x}}^{\sqrt{1+x}} x y \mathrm{~d} y \mathrm{~d} x \\
& =\int_{-1}^{2}\left[\frac{1}{2} x y^{2}\right]_{y=-\sqrt{1+x}}^{y=\sqrt{1+x}} \mathrm{~d} x \\
& =\frac{1}{2} \int_{-1}^{2}[x(1+x)-x(1+x)] \mathrm{d} x=\frac{1}{2} \int_{-1}^{2}(0) \mathrm{d} x=0
\end{aligned}
$$

Example 5 (cont'd)

Let's see what happens if we express \mathcal{R} as a Type I region instead:

$$
\begin{aligned}
\iint_{\mathcal{R}} f(x, y) \mathrm{d} A & =\int_{-\sqrt{3}}^{\sqrt{3}} \int_{y^{2}-1}^{2} x y \mathrm{~d} x \mathrm{~d} y \\
& =\int_{-\sqrt{3}}^{\sqrt{3}} \frac{1}{2}\left[x^{2} y\right]_{x=y^{2}-1}^{x=2} \mathrm{~d} y \\
& =\frac{1}{2} \int_{-\sqrt{3}}^{\sqrt{3}}\left[2 y-y\left(y^{2}-1\right)^{2}\right] \mathrm{d} y \\
& =\frac{1}{2} \int_{-\sqrt{3}}^{\sqrt{3}}\left(2 y-y^{5}-2 y^{3}+y\right) \mathrm{d} y \\
& =\frac{1}{2} \int_{-\sqrt{3}}^{\sqrt{3}}\left(3 y-y^{5}-2 y^{3}\right) \mathrm{d} y \\
& =\frac{1}{2}\left[\frac{3}{2} y^{2}-\frac{1}{6} y^{6}-y^{3}\right]_{y=-\sqrt{3}}^{y=\sqrt{3}} \\
& =\frac{1}{2}\left[\frac{9}{2}-\frac{3}{2}-3 \sqrt{3}-\frac{9}{2}+\frac{3}{2}+3 \sqrt{3}\right]=0
\end{aligned}
$$

Example 5 (cont'd)

Clearly, one order of integration was significantly simpler than the other!

We can take this one step further:

Example 6

Example

Let \mathcal{R} be

and let $f(x, y)$ be an arbitrary integrable function. Since \mathcal{R} can be expressed as a single Type I region, we may write

$$
\iint_{\mathcal{R}} f(x, y) \mathrm{d} A=\int_{-\sqrt{2}}^{\sqrt{2}} \int_{x^{2}-2}^{2-x^{2}} f(x, y) \mathrm{d} y \mathrm{~d} x
$$

Example 6 (cont'd)

Example

However, also recall that \mathcal{R} cannot be expressed as a single Type II region, but rather the union of two Type II regions. As such, define
$\mathcal{R}_{1}:=\{(x, y):-\sqrt{2-y} \leq x \leq \sqrt{2-y},-2 \leq y \leq 0\} ; \quad \mathcal{R}_{2}:=\{(x, y):-\sqrt{2+y} \leq x \leq \sqrt{2+y}, 0 \leq y \leq 2\} ;$
so that $\mathcal{R}=\mathcal{R}_{1} \cup \mathcal{R}_{2}$ and

$$
\begin{aligned}
\iint_{\mathcal{R}} f(x, y) \mathrm{d} A & =\iint_{\mathcal{R}_{1} \cup \mathcal{R}_{2}} f(x, y) \mathrm{d} A \\
& =\int_{-\sqrt{2}}^{0} \int_{-\sqrt{2-y}}^{\sqrt{2-y}} f(x, y) \mathrm{d} x \mathrm{~d} y+\int_{0}^{\sqrt{2}} \int_{-\sqrt{2+y}}^{\sqrt{2+y}} f(x, y) \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

That is, if we integrate w.r.t. x first we need to break our integral into the sum of two integrals! Thus, it is clearly far less work to integrate with respect to y first.

Summary

Summary

Point: Summary:

- There are several types of regions in \mathbb{R}^{2}; Type I, Type II, Type III, and Type IV (everything else).
- Double integrals represent the volume underneath the graph of a bivariate function.
- Double integrals may be computed as two nested single integrals.
- There are always two different "orders of integration" when evaluating a Double Integral; in some cases, one order of integration is significantly simpler than the other.

