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Random Vectors



Leadup

• Consider the following experiment: suppose I pick a point P at random from theinterior of the unit disk, and I let X denote the x−coordinate and Y denote the
y−coordinate.

• We could investigate X and Y separately, but we have this intuitive sense thatthese two random variables are in some way related.• We will quantify this relationship in an upcoming lecture. For now, we will simplysay: “let’s try and consider X and Y together, as a pair (X ,Y ).”• We can imagine generalizing this to not just two random variables, but acollection of n random variables! (X1,X2, · · · ,Xn).• Now, remember how I said a random variable X maps from Ω to R? Well, clearlywhen we start to imagine pairs (or tuples) of random variables we no longer havea map from Ω to R.• Specifically, let’s consider that “picking a point” example; Ω is simply the unitdisk Ω = {(x , y ) : x2 + y2 ≤ 1}. Additionally, this pair (X ,Y ) takes an element inΩ and spits out a pair of numbers (namely, the x− and y−coordinates of thepoint, respectively). In other words,(X ,Y ) : Ω → R2

• For this reason, we often refer to the pair (X ,Y ) as a random vector as opposedto a random variable. (Another terminology is to call them a pair of bivariate
random variables, but this language does not generalize as nicely to more than 2random variables.)
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Random Vectors

• Let’s start making some of this more formal.

Definition: Random Vector

Given a probabilty space (Ω, F,P), a random vector

X⃗ =

X1

X2...
Xn


is a mapping X⃗ : Ω → Rn . We say that the dimension of X⃗ is n, or that
X⃗ is an n-dimensional random vector.

• Though it is customary to write vectors in column format, often times we are lazyand simply write them as row vectors:
X⃗ = (X1,X2, · · · ,Xn)
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Random Vectors

• Remember how we constructed continuous random variables? Given a probabilityspace (Ω, F,P) and a [continuous] random variable X : Ω → R, we argued thatdepending on our choice of P we can construct a c.d.f. FX (x) := P(X ≤ x), which,provided we have differentiability, gave rise to a p.d.f. that we can use to findprobabilities, expectations, etc.

• We can do something similar for random vectors. We start with the notion of a:

Definition: Joint Cumulative Distribution Function

Given an n−dimensional random vector X⃗ = (X1,X2, · · · ,Xn) we definethe joint cumulative distribution function (or joint c.d.f., for short) to be
FX1,X2,··· ,Xn (x1, x2, · · · , xn) := P(X1 ≤ x1, X2 ≤ x2, · · · , Xn ≤ xn)
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Random Vectors

• Under appropriate conditions, we have the following:

Theorem

Under certain conditions (conditions over which we won’t concern our-selves for the purposes of this class), we have the existence of a function
fX1,X2,··· ,Xn (x1, x2, · · · , xn) such that

FX1,X2,··· ,Xn (x1, x2, · · · , xn)
= ż xn

−∞
· · ·

ż x2

−∞

ż x1

−∞
fX1,X2,··· ,Xn (t1, t2, · · · , tn) dt1 dt2 · · · dtn

Such a function is called a joint probability density function (a.k.a. joint
p.d.f, or just joint density).
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Random Vectors

Theorem

A joint density function must satisfy the following two conditions:(1) fX1,··· ,Xn (x1, · · · , xn) ≥ 0 for all (x1, · · · , xn) ∈ Rn

(2) ż

· · ·
ż

Rn
fX1,··· ,Xn (x1, · · · , xn) dx1 · · · dxn = 1

This also works in the other direction; that is, if we have a function
fX1,··· ,Xn (x1, · · · , xn) that satisfies the above two conditions then it is the jointdensity of some random vector X⃗ .

• The relationship between joint c.d.f’s and joint p.d.f.’s is
fX1,X2,··· ,Xn (x1, x2, · · · , xn) = ∂n

∂x1 ∂x2 · · · ∂xn
FX1,X2,··· ,Xn (x1, x2, · · · , xn)
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Random Vectors

• This is perhaps a good time to introduce some simplifying notation.

• When dealing with random vectors in generality, we often will need to write
n−dimensional integrals.• I shall adopt the following notation, which I borrow from Physics:

ż

Rn
fX⃗ (x⃗ ) dx⃗

shall mean ż

· · ·
ż

Rn
fX1,··· ,Xn (x1, · · · , xn) dx1 · · · dxn

• So, for instance, the second condition above can be written as ş

Rn fX⃗ (x⃗ ) dx⃗ = 1.• By the way: in the subscript I’m using a capital X (X⃗ ) and in the argument I’musing a lowercase x (x⃗ ).
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Random Vectors

• Okay, I admit that dealing with random vectors in generality can get a bit pesky.

• When you start talking about “sampling” in 120B, you’ll see why random vectorsarise extremely often throughout statistics. (Loosely speaking: Statisticians liketo collect a lot of data, which can be modeled nicely using random vectors; arandom variable for each observation!)• For the purposes of this class, we will primarily restrict our considerations to
n = 2, which gives rise to so-called bivariate random variables and distributions.But let’s quickly run through some generalities first:
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Multivariate Distributions

• Much like we had distributions in the case of random variables, we also havedistributions in the case of random vectors. These distributions are often referredto as multivariate distributions.

• Unlike with univariate distributions, however, there aren’t a whole lot that havespecific names associated with them.• There are two exceptions; we will discuss one of them in a bit, and timepermitting we will discuss the second a little later.
• Let’s return to our “picking a point” example. More generally, we could considerthe following situation: from a region R in Rn , pick a point at random.• Associated with this experiment, we could utilize the following choice ofprobability measure:

P(A) = volume(A)volume(Ω)In the case of n = 2, this is equivalently written as
P(A) = area(A)area(Ω)
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Multivariate Distributions

• Letting X⃗ = (X1, · · · ,Xn) denote the coordinates of the selected points, one canfind (through a similar argument we used to derive the p.d.f. of the Unif[a, b]distribution) that the joint density of X⃗ is
fX⃗ (x⃗ ) = 1area(Ω) · 1{x⃗∈Ω} (1)

• So, for instance, in our “picking a point from the unit disc” problem the jointdensity of (X ,Y ) is
fX ,Y (x , y ) = 1

π · 1{(x ,y ):x2+y2≤1} = { 1
π if x2 + y2 ≤ 1

0 otherwise

• You can check that this is in fact a valid joint probability density function!

• This distribution (i.e. the one with p.d.f. listed in equation (1) above) doesn’t havea standard name, but I will often refer to this as a multivariate uniformdistribution, due to its similarity to our familiar Unif[a, b] distribution (note thatan interval [a, b] is nothing but a “region” in R1!)
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Bivariate Random Variables

• Given a pair of random variables (X ,Y ), we have the notion of a bivariate densityfunction: a function fX ,Y (x , y ) that is nonnegative over R2 and also integrates tounity (when integrated over R2.

• With such a function, we find that a great many of our familiar functions have nicebivariate analogs: for example, the LOTUS becomes
E[g (X ,Y )] = x

R2

g (x , y ) · fX ,Y (x , y ) dA
• Additionally, just like we found probabilities in the univariate case by integratingthe density, we get probabilities in the bivariate case by integrating the bivariatedensity:

P((X ,Y ) ∈ R) = x

R
fX ,Y (x , y ) dA

• Maybe now you see why we did that whole double integral review...
• One new piece of terminology: the region over which a joint density is nonzero iscalled the support of the random vector. It will almost always be a good idea tosketch the support of a random vector!
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Marginals

• One more piece of terminology that is unique to random vectors is that of the
marginal density/distribution:

Definition: Marginals

Given a random vector X⃗ = (X1, · · · ,Xn) with joint p.d.f. fX⃗ (x⃗ ), the
marginal density of Xi is given by integrating out all other randomvariables from the joint density.
In the Bivariate case, for instance,

fX (x) = ż ∞

−∞
fX ,Y (x , y ) dy

fY (y ) = ż ∞

−∞
fX ,Y (x , y ) dx

• Note that, since the joint density is often only nonzero over a portion of R2, thelimits of the integrals above likely involve variables.
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Joints

• Given higher-dimensional random vectors, we can get more and more quantitiesby integrating out various random variables.

• For instance, given a random vector (X ,Y ,Z ) with joint p.d.f. fX ,Y ,Z (x , y , z), inaddition to the marginal densities of X , Y , and Z we can also get various jointdensities as well:
fX ,Y (x , y ) = ż

R

fX ,Y ,Z (x , y , z) dz
fX ,Z (x , z) = ż

R

fX ,Y ,Z (x , y , z) dy
fY ,Z (y , z) = ż

R

fX ,Y ,Z (x , y , z) dx
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Example

Suppose (X ,Y ) is a pair of random variables with joint density given by
fX ,Y (x , y ) = {c · e−(x+y ) if x ≤ y < ∞, 0 ≤ x < ∞

0 otherwise
where c > 0 is an as-of-yet undetermined constant.
(a) Find the value of c that ensures fX ,Y (x , y ) is a valid joint p.d.f..(b) Compute P(X ≥ 0.5, Y ≥ 0.5)(c) Compute E[XY ](d) Find fX (x), the marginal density of X .
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Discrete?

• So far we’ve dealt only with continuous random vectors. What about discreteones?

• Well, the primary difference is that instead of a joint p.d.f. we have a (perhapsmore easily intuitable) joint probability mass function
pX1,··· ,Xn (x1, · · · , xn) = P(X1 = x1, · · · , Xn = xn)that obeys:(1) 0 ≤ pX1 ,··· ,Xn (x1, · · · , xn) ≤ 1 for all x⃗ ∈ Rn(2) ∑Rn pX1 ,··· ,Xn (x1, · · · , xn) = 1• Familiar analogies apply:

P(X⃗ ∈ A) = ∑
x⃗∈A

pX⃗ (x⃗ )
and the LOTUS becomes

E[g (X⃗ )] =∑
Rn

g (x⃗ ) · px⃗ (x⃗ )
[note that both summations above are really n−summations; that is, they are nsums in one]
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Example

Let (X ,Y ) be a pair of bivariate discrete random variables with joint p.m.f.
pX ,Y (x , y ) = {c · xy if x ∈ {1, 2, 3, 4}, y ∈ {1, 2, 3}

0 otherwise
where c > 0 is an as-of-yet undetermined constant.
(a) Find the value of c(b) Compute E[XY ]
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A Useful Result

Theorem: Linearity of Expectation

Given a collection of random variables X1, · · · ,Xn and a collection of constants
a1, · · · , an , we have

E

[
n∑

i=1

aiXi

] = n∑
i=1

aiE[Xi ]

Proof.• We use the multidimensional LOTUS:
E

[
n∑

i=1

Xi

] = ż

Rn

(
n∑

i=1

aixi

)
fX⃗ (x⃗ ) dx

= ż

Rn

n∑
i=1

(aixi fX⃗ (x⃗ )) dx⃗
= n∑

i=1

[
ż

Rn
aixi fX⃗ (x⃗ )dx⃗]

= n∑
i=1

E[aiXi ] = n∑
i=1

aiE[Xi ]
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A Useful Result

• If the vector notation on the previous slide is too confusing, you can think ofthings in terms of n = 2; the proof for general n follows analogously.
E [a1X1 + a2X2] = x

R2

(a1x1 + a2x2)fX1,X2 (x1, x2) dA

= x

R2

[
a1x1fX1,X2 (x1, x2) + a2x2fX1,X2 (x1, x2)] dA

= x

R2

a1x1fX1,X2 (x1, x2) dA + x

R2

a2x2fX1,X2 (x1, x2) dA
= E[a1X1] +E[a2X2] = a1E[X1] + a2E[X2]

Random Vectors Multivariate distributions Bivariate Random Variables/Distributions21



A Useful Result

• If the vector notation on the previous slide is too confusing, you can think ofthings in terms of n = 2; the proof for general n follows analogously.
E [a1X1 + a2X2] = x

R2

(a1x1 + a2x2)fX1,X2 (x1, x2) dA
= x

R2

[
a1x1fX1,X2 (x1, x2) + a2x2fX1,X2 (x1, x2)] dA

= x

R2

a1x1fX1,X2 (x1, x2) dA + x

R2

a2x2fX1,X2 (x1, x2) dA
= E[a1X1] +E[a2X2] = a1E[X1] + a2E[X2]

Random Vectors Multivariate distributions Bivariate Random Variables/Distributions21



A Useful Result

• If the vector notation on the previous slide is too confusing, you can think ofthings in terms of n = 2; the proof for general n follows analogously.
E [a1X1 + a2X2] = x

R2

(a1x1 + a2x2)fX1,X2 (x1, x2) dA
= x

R2

[
a1x1fX1,X2 (x1, x2) + a2x2fX1,X2 (x1, x2)] dA

= x

R2

a1x1fX1,X2 (x1, x2) dA + x

R2

a2x2fX1,X2 (x1, x2) dA

= E[a1X1] +E[a2X2] = a1E[X1] + a2E[X2]

Random Vectors Multivariate distributions Bivariate Random Variables/Distributions21



A Useful Result

• If the vector notation on the previous slide is too confusing, you can think ofthings in terms of n = 2; the proof for general n follows analogously.
E [a1X1 + a2X2] = x

R2

(a1x1 + a2x2)fX1,X2 (x1, x2) dA
= x

R2

[
a1x1fX1,X2 (x1, x2) + a2x2fX1,X2 (x1, x2)] dA

= x

R2

a1x1fX1,X2 (x1, x2) dA + x

R2

a2x2fX1,X2 (x1, x2) dA
= E[a1X1] +E[a2X2] = a1E[X1] + a2E[X2]

Random Vectors Multivariate distributions Bivariate Random Variables/Distributions21


	Random Vectors
	Multivariate distributions
	Bivariate Random Variables/Distributions

