8: Random Vectors / Multivariate Distributions

PSTAT 120A: Summer 2022

Ethan P. Marzban

July 12, 2022

University of California, Santa Barbara

Where We've Been

- Axioms of Probability, Probability Spaces, Counting

Where We've Been

- Axioms of Probability, Probability Spaces, Counting
- Conditional Probabilities, independence, etc.

Where We've Been

- Axioms of Probability, Probability Spaces, Counting
- Conditional Probabilities, independence, etc.
- Basics of Random Variables (classification, p.m.f., c.m.f., moments)

Where We've Been

- Axioms of Probability, Probability Spaces, Counting
- Conditional Probabilities, independence, etc.
- Basics of Random Variables (classification, p.m.f., c.m.f., moments)
- Discrete Distributions

Where We've Been

- Axioms of Probability, Probability Spaces, Counting
- Conditional Probabilities, independence, etc.
- Basics of Random Variables (classification, p.m.f., c.m.f., moments)
- Discrete Distributions
- Continuous Distributions

Where We've Been

- Axioms of Probability, Probability Spaces, Counting
- Conditional Probabilities, independence, etc.
- Basics of Random Variables (classification, p.m.f., c.m.f., moments)
- Discrete Distributions
- Continuous Distributions
- Transformations of Random Variables

Where We've Been

- Axioms of Probability, Probability Spaces, Counting
- Conditional Probabilities, independence, etc.
- Basics of Random Variables (classification, p.m.f., c.m.f., moments)
- Discrete Distributions
- Continuous Distributions
- Transformations of Random Variables
- Double Integrals

Random Vectors

Leadup

- Consider the following experiment: suppose I pick a point P at random from the interior of the unit disk, and I let X denote the x-coordinate and Y denote the y-coordinate.

Leadup

- Consider the following experiment: suppose I pick a point P at random from the interior of the unit disk, and I let X denote the x-coordinate and Y denote the y-coordinate.
- We could investigate X and Y separately, but we have this intuitive sense that these two random variables are in some way related.

Leadup

- Consider the following experiment: suppose I pick a point P at random from the interior of the unit disk, and I let X denote the x-coordinate and Y denote the y-coordinate.
- We could investigate X and Y separately, but we have this intuitive sense that these two random variables are in some way related.
- We will quantify this relationship in an upcoming lecture. For now, we will simply say: "let's try and consider X and Y together, as a pair (X, Y)."

Leadup

- Consider the following experiment: suppose I pick a point P at random from the interior of the unit disk, and I let X denote the x-coordinate and Y denote the y-coordinate.
- We could investigate X and Y separately, but we have this intuitive sense that these two random variables are in some way related.
- We will quantify this relationship in an upcoming lecture. For now, we will simply say: "let's try and consider X and Y together, as a pair (X, Y)."
- We can imagine generalizing this to not just two random variables, but a collection of n random variables! $\left(X_{1}, X_{2}, \cdots, X_{n}\right)$.

Leadup

- Consider the following experiment: suppose I pick a point P at random from the interior of the unit disk, and I let X denote the x-coordinate and Y denote the y-coordinate.
- We could investigate X and Y separately, but we have this intuitive sense that these two random variables are in some way related.
- We will quantify this relationship in an upcoming lecture. For now, we will simply say: "let's try and consider X and Y together, as a pair (X, Y)."
- We can imagine generalizing this to not just two random variables, but a collection of n random variables! $\left(X_{1}, X_{2}, \cdots, X_{n}\right)$.
- Now, remember how I said a random variable X maps from Ω to \mathbb{R} ? Well, clearly when we start to imagine pairs (or tuples) of random variables we no longer have a map from Ω to \mathbb{R}.

Leadup

- Consider the following experiment: suppose I pick a point P at random from the interior of the unit disk, and I let X denote the x-coordinate and Y denote the y-coordinate.
- We could investigate X and Y separately, but we have this intuitive sense that these two random variables are in some way related.
- We will quantify this relationship in an upcoming lecture. For now, we will simply say: "let's try and consider X and Y together, as a pair (X, Y)."
- We can imagine generalizing this to not just two random variables, but a collection of n random variables! $\left(X_{1}, X_{2}, \cdots, X_{n}\right)$.
- Now, remember how I said a random variable X maps from Ω to \mathbb{R} ? Well, clearly when we start to imagine pairs (or tuples) of random variables we no longer have a map from Ω to \mathbb{R}.
- Specifically, let's consider that "picking a point" example; Ω is simply the unit disk $\Omega=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. Additionally, this pair (X, Y) takes an element in Ω and spits out a pair of numbers (namely, the x - and y-coordinates of the point, respectively). In other words,

$$
(X, Y): \Omega \rightarrow \mathbb{R}^{2}
$$

Leadup

- Consider the following experiment: suppose I pick a point P at random from the interior of the unit disk, and I let X denote the x-coordinate and Y denote the y-coordinate.
- We could investigate X and Y separately, but we have this intuitive sense that these two random variables are in some way related.
- We will quantify this relationship in an upcoming lecture. For now, we will simply say: "let's try and consider X and Y together, as a pair (X, Y)."
- We can imagine generalizing this to not just two random variables, but a collection of n random variables! $\left(X_{1}, X_{2}, \cdots, X_{n}\right)$.
- Now, remember how I said a random variable X maps from Ω to \mathbb{R} ? Well, clearly when we start to imagine pairs (or tuples) of random variables we no longer have a map from Ω to \mathbb{R}.
- Specifically, let's consider that "picking a point" example; Ω is simply the unit disk $\Omega=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. Additionally, this pair (X, Y) takes an element in Ω and spits out a pair of numbers (namely, the x - and y-coordinates of the point, respectively). In other words,

$$
(X, Y): \Omega \rightarrow \mathbb{R}^{2}
$$

- For this reason, we often refer to the pair (X, Y) as a random vector as opposed to a random variable. (Another terminology is to call them a pair of bivariate random variables, but this language does not generalize as nicely to more than 2

Random Vectors

- Let's start making some of this more formal.

Random Vectors

- Let's start making some of this more formal.

Definition: Random Vector

Given a probabilty space $(\Omega, \mathcal{F}, \mathbb{P})$, a random vector

$$
\overrightarrow{\boldsymbol{x}}=\left(\begin{array}{c}
x_{1} \\
X_{2} \\
\vdots \\
X_{n}
\end{array}\right)
$$

is a mapping $\overrightarrow{\boldsymbol{X}}: \Omega \rightarrow \mathbb{R}^{n}$. We say that the dimension of $\overrightarrow{\boldsymbol{X}}$ is n, or that $\overrightarrow{\boldsymbol{X}}$ is an \boldsymbol{n}-dimensional random vector.

Random Vectors

- Let's start making some of this more formal.

Definition: Random Vector

Given a probabilty space $(\Omega, \mathcal{F}, \mathbb{P})$, a random vector

$$
\overrightarrow{\boldsymbol{x}}=\left(\begin{array}{c}
x_{1} \\
X_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

is a mapping $\overrightarrow{\boldsymbol{X}}: \Omega \rightarrow \mathbb{R}^{n}$. We say that the dimension of $\overrightarrow{\boldsymbol{X}}$ is n, or that $\overrightarrow{\boldsymbol{X}}$ is an \boldsymbol{n}-dimensional random vector.

- Though it is customary to write vectors in column format, often times we are lazy and simply write them as row vectors:

$$
\overrightarrow{\boldsymbol{x}}=\left(X_{1}, X_{2}, \cdots, X_{n}\right)
$$

Random Vectors

- Remember how we constructed continuous random variables? Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a [continuous] random variable $X: \Omega \rightarrow \mathbb{R}$, we argued that depending on our choice of \mathbb{P} we can construct a c.d.f. $F_{X}(x):=\mathbb{P}(X \leq x)$, which, provided we have differentiability, gave rise to a p.d.f. that we can use to find probabilities, expectations, etc.

Random Vectors

- Remember how we constructed continuous random variables? Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a [continuous] random variable $X: \Omega \rightarrow \mathbb{R}$, we argued that depending on our choice of \mathbb{P} we can construct a c.d.f. $F_{X}(x):=\mathbb{P}(X \leq x)$, which, provided we have differentiability, gave rise to a p.d.f. that we can use to find probabilities, expectations, etc.
- We can do something similar for random vectors. We start with the notion of a:

Random Vectors

- Remember how we constructed continuous random variables? Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a [continuous] random variable $X: \Omega \rightarrow \mathbb{R}$, we argued that depending on our choice of \mathbb{P} we can construct a c.d.f. $F_{X}(x):=\mathbb{P}(X \leq x)$, which, provided we have differentiability, gave rise to a p.d.f. that we can use to find probabilities, expectations, etc.
- We can do something similar for random vectors. We start with the notion of a:

Definition: Joint Cumulative Distribution Function

Given an n-dimensional random vector $\overrightarrow{\boldsymbol{X}}=\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ we define the joint cumulative distribution function (or joint c.d.f., for short) to be

$$
F_{X_{1}, x_{2}, \cdots, x_{n}}\left(x_{1}, x_{2}, \cdots, x_{n}\right):=\mathbb{P}\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \cdots, X_{n} \leq x_{n}\right)
$$

Random Vectors

- Under appropriate conditions, we have the following:

Random Vectors

- Under appropriate conditions, we have the following:

Theorem

Under certain conditions (conditions over which we won't concern ourselves for the purposes of this class), we have the existence of a function $f_{X_{1}, X_{2}, \cdots, x_{n}}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ such that

$$
\begin{aligned}
& F_{X_{1}, X_{2}, \cdots, x_{n}}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \\
& \quad=\int_{-\infty}^{x_{n}} \cdots \int_{-\infty}^{x_{2}} \int_{-\infty}^{x_{1}} f_{X_{1}, X_{2}, \cdots, x_{n}}\left(t_{1}, t_{2}, \cdots, t_{n}\right) \mathrm{d} t_{1} \mathrm{~d} t_{2} \cdots \mathrm{~d} t_{n}
\end{aligned}
$$

Such a function is called a joint probability density function (a.k.a. joint p.d.f, or just joint density).

Random Vectors

Theorem

A joint density function must satisfy the following two conditions:
(1) $f_{X_{1}, \cdots, x_{n}}\left(x_{1}, \cdots, x_{n}\right) \geq 0$ for all $\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$
(2) $\int \cdots \int_{\mathbb{R}^{n}} f_{X_{1}, \cdots, x_{n}}\left(x_{1}, \cdots, x_{n}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}=1$

This also works in the other direction; that is, if we have a function $f_{X_{1}, \cdots, X_{n}}\left(x_{1}, \cdots, x_{n}\right)$ that satisfies the above two conditions then it is the joint density of some random vector $\overrightarrow{\boldsymbol{X}}$.

Random Vectors

Theorem

A joint density function must satisfy the following two conditions:
(1) $f_{X_{1}, \cdots, x_{n}}\left(x_{1}, \cdots, x_{n}\right) \geq 0$ for all $\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$
(2) $\int \cdots \int_{\mathbb{R}^{n}} f_{X_{1}, \cdots, x_{n}}\left(x_{1}, \cdots, x_{n}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}=1$

This also works in the other direction; that is, if we have a function $f_{X_{1}, \cdots, x_{n}}\left(x_{1}, \cdots, x_{n}\right)$ that satisfies the above two conditions then it is the joint density of some random vector $\overrightarrow{\boldsymbol{X}}$.

- The relationship between joint c.d.f's and joint p.d.f.'s is

$$
f_{X_{1}, X_{2}, \cdots, x_{n}}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\frac{\partial^{n}}{\partial x_{1} \partial x_{2} \cdots \partial x_{n}} F_{X_{1}, X_{2}, \cdots, x_{n}}\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

Random Vectors

- This is perhaps a good time to introduce some simplifying notation.

Random Vectors

- This is perhaps a good time to introduce some simplifying notation.
- When dealing with random vectors in generality, we often will need to write n-dimensional integrals.

Random Vectors

- This is perhaps a good time to introduce some simplifying notation.
- When dealing with random vectors in generality, we often will need to write n-dimensional integrals.
- I shall adopt the following notation, which I borrow from Physics:

$$
\int_{\mathbb{R}^{n}} f_{\vec{x}}(\vec{x}) d \vec{x}
$$

shall mean

$$
\int \cdots \int_{\mathbb{R}^{n}} f_{X_{1}, \cdots, x_{n}}\left(x_{1}, \cdots, x_{n}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}
$$

Random Vectors

- This is perhaps a good time to introduce some simplifying notation.
- When dealing with random vectors in generality, we often will need to write n-dimensional integrals.
- I shall adopt the following notation, which I borrow from Physics:

$$
\int_{\mathbb{R}^{n}} f_{\vec{x}}(\vec{x}) \mathrm{d} \vec{x}
$$

shall mean

$$
\int \cdots \int_{\mathbb{R}^{n}} f_{X_{1}, \cdots, x_{n}}\left(x_{1}, \cdots, x_{n}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}
$$

- So, for instance, the second condition above can be written as $\int_{\mathbb{R}^{n}} f_{\vec{x}}(\vec{x}) \mathrm{d} \vec{x}=1$.

Random Vectors

- This is perhaps a good time to introduce some simplifying notation.
- When dealing with random vectors in generality, we often will need to write n-dimensional integrals.
- I shall adopt the following notation, which I borrow from Physics:

$$
\int_{\mathbb{R}^{n}} f_{\vec{x}}(\vec{x}) \mathrm{d} \vec{x}
$$

shall mean

$$
\int \cdots \int_{\mathbb{R}^{n}} f_{X_{1}, \cdots, x_{n}}\left(x_{1}, \cdots, x_{n}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}
$$

- So, for instance, the second condition above can be written as $\int_{\mathbb{R}^{n}} f_{\vec{x}}(\vec{x}) \mathrm{d} \overrightarrow{\boldsymbol{x}}=1$.
- By the way: in the subscript I'm using a capital $X(\overrightarrow{\boldsymbol{X}})$ and in the argument I'm using a lowercase $x(\vec{x})$.

Random Vectors

- Okay, I admit that dealing with random vectors in generality can get a bit pesky.

Random Vectors

- Okay, I admit that dealing with random vectors in generality can get a bit pesky.
- When you start talking about "sampling" in 120B, you'll see why random vectors arise extremely often throughout statistics. (Loosely speaking: Statisticians like to collect a lot of data, which can be modeled nicely using random vectors; a random variable for each observation!)

Random Vectors

- Okay, I admit that dealing with random vectors in generality can get a bit pesky.
- When you start talking about "sampling" in 120B, you'll see why random vectors arise extremely often throughout statistics. (Loosely speaking: Statisticians like to collect a lot of data, which can be modeled nicely using random vectors; a random variable for each observation!)
- For the purposes of this class, we will primarily restrict our considerations to $n=2$, which gives rise to so-called bivariate random variables and distributions. But let's quickly run through some generalities first:

Multivariate distributions

Multivariate Distributions

- Much like we had distributions in the case of random variables, we also have distributions in the case of random vectors. These distributions are often referred to as multivariate distributions.

Multivariate Distributions

- Much like we had distributions in the case of random variables, we also have distributions in the case of random vectors. These distributions are often referred to as multivariate distributions.
- Unlike with univariate distributions, however, there aren't a whole lot that have specific names associated with them.

Multivariate Distributions

- Much like we had distributions in the case of random variables, we also have distributions in the case of random vectors. These distributions are often referred to as multivariate distributions.
- Unlike with univariate distributions, however, there aren't a whole lot that have specific names associated with them.
- There are two exceptions; we will discuss one of them in a bit, and time permitting we will discuss the second a little later.

Multivariate Distributions

- Much like we had distributions in the case of random variables, we also have distributions in the case of random vectors. These distributions are often referred to as multivariate distributions.
- Unlike with univariate distributions, however, there aren't a whole lot that have specific names associated with them.
- There are two exceptions; we will discuss one of them in a bit, and time permitting we will discuss the second a little later.
- Let's return to our "picking a point" example. More generally, we could consider the following situation: from a region \mathcal{R} in \mathbb{R}^{n}, pick a point at random.

Multivariate Distributions

- Much like we had distributions in the case of random variables, we also have distributions in the case of random vectors. These distributions are often referred to as multivariate distributions.
- Unlike with univariate distributions, however, there aren't a whole lot that have specific names associated with them.
- There are two exceptions; we will discuss one of them in a bit, and time permitting we will discuss the second a little later.
- Let's return to our "picking a point" example. More generally, we could consider the following situation: from a region \mathcal{R} in \mathbb{R}^{n}, pick a point at random.
- Associated with this experiment, we could utilize the following choice of probability measure:

$$
\mathbb{P}(A)=\frac{\operatorname{volume}(A)}{\operatorname{volume}(\Omega)}
$$

In the case of $n=2$, this is equivalently written as

$$
\mathbb{P}(A)=\frac{\operatorname{area}(A)}{\operatorname{area}(\Omega)}
$$

Multivariate Distributions

- Letting $\overrightarrow{\boldsymbol{X}}=\left(X_{1}, \cdots, X_{n}\right)$ denote the coordinates of the selected points, one can find (through a similar argument we used to derive the p.d.f. of the Unif[a, b] distribution) that the joint density of $\overrightarrow{\boldsymbol{X}}$ is

$$
\begin{equation*}
f_{\vec{x}}(\vec{x})=\frac{1}{\operatorname{area}(\Omega)} \cdot \mathbb{1}_{\{\vec{x} \in \Omega\}} \tag{1}
\end{equation*}
$$

Multivariate Distributions

- Letting $\overrightarrow{\boldsymbol{X}}=\left(X_{1}, \cdots, X_{n}\right)$ denote the coordinates of the selected points, one can find (through a similar argument we used to derive the p.d.f. of the Unif[a, b] distribution) that the joint density of $\overrightarrow{\boldsymbol{X}}$ is

$$
\begin{equation*}
f_{\vec{x}}(\vec{x})=\frac{1}{\operatorname{area}(\Omega)} \cdot \mathbb{1}_{\{\vec{x} \in \Omega\}} \tag{1}
\end{equation*}
$$

- So, for instance, in our "picking a point from the unit disc" problem the joint density of (X, Y) is

$$
f_{X, Y}(x, y)=\frac{1}{\pi} \cdot \mathbb{1}_{\left\{(x, y): x^{2}+y^{2} \leq 1\right\}}= \begin{cases}\frac{1}{\pi} & \text { if } x^{2}+y^{2} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Multivariate Distributions

- Letting $\overrightarrow{\boldsymbol{X}}=\left(X_{1}, \cdots, X_{n}\right)$ denote the coordinates of the selected points, one can find (through a similar argument we used to derive the p.d.f. of the Unif[a, b] distribution) that the joint density of $\overrightarrow{\boldsymbol{X}}$ is

$$
\begin{equation*}
f_{\vec{x}}(\vec{x})=\frac{1}{\operatorname{area}(\Omega)} \cdot \mathbb{1}_{\{\vec{x} \in \Omega\}} \tag{1}
\end{equation*}
$$

- So, for instance, in our "picking a point from the unit disc" problem the joint density of (X, Y) is

$$
f_{X, Y}(x, y)=\frac{1}{\pi} \cdot \mathbb{1}_{\left\{(x, y): x^{2}+y^{2} \leq 1\right\}}= \begin{cases}\frac{1}{\pi} & \text { if } x^{2}+y^{2} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- You can check that this is in fact a valid joint probability density function!

Multivariate Distributions

- Letting $\overrightarrow{\boldsymbol{X}}=\left(X_{1}, \cdots, X_{n}\right)$ denote the coordinates of the selected points, one can find (through a similar argument we used to derive the p.d.f. of the Unif $[a, b]$ distribution) that the joint density of $\overrightarrow{\boldsymbol{X}}$ is

$$
\begin{equation*}
f_{\vec{x}}(\vec{x})=\frac{1}{\operatorname{area}(\Omega)} \cdot \mathbb{1}_{\{\vec{x} \in \Omega\}} \tag{1}
\end{equation*}
$$

- So, for instance, in our "picking a point from the unit disc" problem the joint density of (X, Y) is

$$
f_{X, Y}(x, y)=\frac{1}{\pi} \cdot \mathbb{1}_{\left\{(x, y): x^{2}+y^{2} \leq 1\right\}}= \begin{cases}\frac{1}{\pi} & \text { if } x^{2}+y^{2} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- You can check that this is in fact a valid joint probability density function!
- This distribution (i.e. the one with p.d.f. listed in equation (1) above) doesn't have a standard name, but I will often refer to this as a multivariate uniform distribution, due to its similarity to our familiar Unif[$a, b]$ distribution (note that an interval $[a, b]$ is nothing but a "region" in \mathbb{R}^{1} !)

Bivariate Random
 Variables/Distributions

Bivariate Random Variables

- Given a pair of random variables (X, Y), we have the notion of a bivariate density function: a function $f_{X, Y}(x, y)$ that is nonnegative over \mathbb{R}^{2} and also integrates to unity (when integrated over \mathbb{R}^{2}.

Bivariate Random Variables

- Given a pair of random variables (X, Y), we have the notion of a bivariate density function: a function $f_{X, Y}(x, y)$ that is nonnegative over \mathbb{R}^{2} and also integrates to unity (when integrated over \mathbb{R}^{2}.
- With such a function, we find that a great many of our familiar functions have nice bivariate analogs: for example, the LOTUS becomes

$$
\mathbb{E}[g(X, Y)]=\iint_{\mathbb{R}^{2}} g(x, y) \cdot f_{X, Y}(x, y) \mathrm{d} A
$$

Bivariate Random Variables

- Given a pair of random variables (X, Y), we have the notion of a bivariate density function: a function $f_{X, Y}(x, y)$ that is nonnegative over \mathbb{R}^{2} and also integrates to unity (when integrated over \mathbb{R}^{2}.
- With such a function, we find that a great many of our familiar functions have nice bivariate analogs: for example, the LOTUS becomes

$$
\mathbb{E}[g(X, Y)]=\iint_{\mathbb{R}^{2}} g(x, y) \cdot f_{X, Y}(x, y) \mathrm{d} A
$$

- Additionally, just like we found probabilities in the univariate case by integrating the density, we get probabilities in the bivariate case by integrating the bivariate density:

$$
\mathbb{P}((X, Y) \in \mathcal{R})=\iint_{\mathcal{R}} f_{X, Y}(x, y) \mathrm{d} A
$$

Bivariate Random Variables

- Given a pair of random variables (X, Y), we have the notion of a bivariate density function: a function $f_{X, Y}(x, y)$ that is nonnegative over \mathbb{R}^{2} and also integrates to unity (when integrated over \mathbb{R}^{2}.
- With such a function, we find that a great many of our familiar functions have nice bivariate analogs: for example, the LOTUS becomes

$$
\mathbb{E}[g(X, Y)]=\iint_{\mathbb{R}^{2}} g(x, y) \cdot f_{X, Y}(x, y) \mathrm{d} A
$$

- Additionally, just like we found probabilities in the univariate case by integrating the density, we get probabilities in the bivariate case by integrating the bivariate density:

$$
\mathbb{P}((X, Y) \in \mathcal{R})=\iint_{\mathcal{R}} f_{X, Y}(x, y) \mathrm{d} A
$$

- Maybe now you see why we did that whole double integral review...

Bivariate Random Variables

- Given a pair of random variables (X, Y), we have the notion of a bivariate density function: a function $f_{X, Y}(x, y)$ that is nonnegative over \mathbb{R}^{2} and also integrates to unity (when integrated over \mathbb{R}^{2}.
- With such a function, we find that a great many of our familiar functions have nice bivariate analogs: for example, the LOTUS becomes

$$
\mathbb{E}[g(X, Y)]=\iint_{\mathbb{R}^{2}} g(x, y) \cdot f_{X, Y}(x, y) \mathrm{d} A
$$

- Additionally, just like we found probabilities in the univariate case by integrating the density, we get probabilities in the bivariate case by integrating the bivariate density:

$$
\mathbb{P}((X, Y) \in \mathcal{R})=\iint_{\mathcal{R}} f_{X, Y}(x, y) \mathrm{d} A
$$

- Maybe now you see why we did that whole double integral review...
- One new piece of terminology: the region over which a joint density is nonzero is called the support of the random vector. It will almost always be a good idea to sketch the support of a random vector!

Marginals

- One more piece of terminology that is unique to random vectors is that of the marginal density/distribution:

Marginals

- One more piece of terminology that is unique to random vectors is that of the marginal density/distribution:

Definition: Marginals

Given a random vector $\overrightarrow{\boldsymbol{X}}=\left(X_{1}, \cdots, X_{n}\right)$ with joint p.d.f. $f_{\overrightarrow{\boldsymbol{X}}}(\overrightarrow{\boldsymbol{X}})$, the marginal density of $\boldsymbol{X}_{\boldsymbol{i}}$ is given by integrating out all other random variables from the joint density.

In the Bivariate case, for instance,

$$
\begin{aligned}
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y \\
& f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x
\end{aligned}
$$

Marginals

- One more piece of terminology that is unique to random vectors is that of the marginal density/distribution:

Definition: Marginals

Given a random vector $\overrightarrow{\boldsymbol{X}}=\left(X_{1}, \cdots, X_{n}\right)$ with joint p.d.f. $f_{\overrightarrow{\boldsymbol{X}}}(\overrightarrow{\boldsymbol{X}})$, the marginal density of $\boldsymbol{X}_{\boldsymbol{i}}$ is given by integrating out all other random variables from the joint density.

In the Bivariate case, for instance,

$$
\begin{aligned}
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y \\
& f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x
\end{aligned}
$$

- Note that, since the joint density is often only nonzero over a portion of \mathbb{R}^{2}, the limits of the integrals above likely involve variables.

Joints

- Given higher-dimensional random vectors, we can get more and more quantities by integrating out various random variables.

Joints

- Given higher-dimensional random vectors, we can get more and more quantities by integrating out various random variables.
- For instance, given a random vector (X, Y, Z) with joint p.d.f. $f_{X, Y, Z}(x, y, z)$, in addition to the marginal densities of X, Y, and Z we can also get various joint densities as well:

$$
\begin{aligned}
f_{X, Y}(x, y) & =\int_{\mathbb{R}} f_{X, Y, Z}(x, y, z) \mathrm{d} z \\
f_{X, Z}(x, z) & =\int_{\mathbb{R}} f_{X, Y, Z}(x, y, z) \mathrm{d} y \\
f_{Y, Z}(y, z) & =\int_{\mathbb{R}} f_{X, Y, Z}(x, y, z) \mathrm{d} x
\end{aligned}
$$

Example

Suppose (X, Y) is a pair of random variables with joint density given by

$$
f_{X, Y}(x, y)= \begin{cases}c \cdot e^{-(x+y)} & \text { if } x \leq y<\infty, 0 \leq x<\infty \\ 0 & \text { otherwise }\end{cases}
$$

where $c>0$ is an as-of-yet undetermined constant.
(a) Find the value of c that ensures $f_{X, Y}(x, y)$ is a valid joint p.d.f..
(b) Compute $\mathbb{P}(X \geq 0.5, Y \geq 0.5)$
(c) Compute $\mathbb{E}[X Y]$
(d) Find $f_{X}(X)$, the marginal density of X.

Discrete?

- So far we've dealt only with continuous random vectors. What about discrete ones?

Discrete?

- So far we've dealt only with continuous random vectors. What about discrete ones?
- Well, the primary difference is that instead of a joint p.d.f. we have a (perhaps more easily intuitable) joint probability mass function

$$
p_{x_{1}, \cdots, x_{n}}\left(x_{1}, \cdots, x_{n}\right)=\mathbb{P}\left(X_{1}=x_{1}, \cdots, X_{n}=x_{n}\right)
$$

that obeys:
(1) $0 \leq p_{x_{1}, \cdots, x_{n}}\left(x_{1}, \cdots, x_{n}\right) \leq 1$ for all $\vec{x} \in \mathbb{R}^{n}$
(2) $\sum_{\mathbb{R}^{n}} p_{x_{1}, \cdots, x_{n}}\left(x_{1}, \cdots, x_{n}\right)=1$

Discrete?

- So far we've dealt only with continuous random vectors. What about discrete ones?
- Well, the primary difference is that instead of a joint p.d.f. we have a (perhaps more easily intuitable) joint probability mass function

$$
p_{X_{1}, \cdots, x_{n}}\left(x_{1}, \cdots, x_{n}\right)=\mathbb{P}\left(X_{1}=x_{1}, \cdots, X_{n}=x_{n}\right)
$$

that obeys:
(1) $0 \leq p_{x_{1}, \cdots, x_{n}}\left(x_{1}, \cdots, x_{n}\right) \leq 1$ for all $\vec{x} \in \mathbb{R}^{n}$
(2) $\sum_{\mathbb{R}^{n}} p_{x_{1}, \cdots, x_{n}}\left(x_{1}, \cdots, x_{n}\right)=1$

- Familiar analogies apply:

$$
\mathbb{P}(\overrightarrow{\boldsymbol{X}} \in A)=\sum_{\vec{x} \in A} p_{\vec{X}}(\overrightarrow{\boldsymbol{x}})
$$

and the LOTUS becomes

$$
\mathbb{E}[g(\overrightarrow{\boldsymbol{X}})]=\sum_{\mathbb{R}^{n}} g(\vec{x}) \cdot p_{\vec{x}}(\overrightarrow{\boldsymbol{x}})
$$

[note that both summations above are really n-summations; that is, they are n sums in one]

Example

Let (X, Y) be a pair of bivariate discrete random variables with joint p.m.f.

$$
p_{X, Y}(x, y)= \begin{cases}c \cdot x y & \text { if } x \in\{1,2,3,4\}, y \in\{1,2,3\} \\ 0 & \text { otherwise }\end{cases}
$$

where $c>0$ is an as-of-yet undetermined constant.
(a) Find the value of c
(b) Compute $\mathbb{E}[X Y]$

A Useful Result

Theorem: Linearity of Expectation

Given a collection of random variables X_{1}, \cdots, X_{n} and a collection of constants a_{1}, \cdots, a_{n}, we have

$$
\mathbb{E}\left[\sum_{i=1}^{n} a_{i} X_{i}\right]=\sum_{i=1}^{n} a_{i} \mathbb{E}\left[X_{i}\right]
$$

A Useful Result

Theorem: Linearity of Expectation

Given a collection of random variables X_{1}, \cdots, X_{n} and a collection of constants a_{1}, \cdots, a_{n}, we have

$$
\mathbb{E}\left[\sum_{i=1}^{n} a_{i} X_{i}\right]=\sum_{i=1}^{n} a_{i} \mathbb{E}\left[X_{i}\right]
$$

Proof.

- We use the multidimensional LOTUS:

$$
\mathbb{E}\left[\sum_{i=1}^{n} x_{i}\right]=\int_{\mathbb{R}^{n}}\left(\sum_{i=1}^{n} a_{i} x_{i}\right) f_{\overrightarrow{\boldsymbol{X}}}(\overrightarrow{\boldsymbol{x}}) \mathrm{d} x
$$

A Useful Result

Theorem: Linearity of Expectation

Given a collection of random variables X_{1}, \cdots, X_{n} and a collection of constants a_{1}, \cdots, a_{n}, we have

$$
\mathbb{E}\left[\sum_{i=1}^{n} a_{i} X_{i}\right]=\sum_{i=1}^{n} a_{i} \mathbb{E}\left[X_{i}\right]
$$

Proof.

- We use the multidimensional LOTUS:

$$
\begin{aligned}
\mathbb{E}\left[\sum_{i=1}^{n} x_{i}\right] & =\int_{\mathbb{R}^{n}}\left(\sum_{i=1}^{n} a_{i} x_{i}\right) f_{\overrightarrow{\boldsymbol{X}}}(\overrightarrow{\boldsymbol{x}}) \mathrm{d} x \\
& =\int_{\mathbb{R}^{n}} \sum_{i=1}^{n}\left(a_{i} x_{i} f_{\overrightarrow{\boldsymbol{X}}}(\overrightarrow{\boldsymbol{x}})\right) \mathrm{d} \overrightarrow{\boldsymbol{x}}
\end{aligned}
$$

A Useful Result

Theorem: Linearity of Expectation

Given a collection of random variables X_{1}, \cdots, X_{n} and a collection of constants a_{1}, \cdots, a_{n}, we have

$$
\mathbb{E}\left[\sum_{i=1}^{n} a_{i} X_{i}\right]=\sum_{i=1}^{n} a_{i} \mathbb{E}\left[X_{i}\right]
$$

Proof.

- We use the multidimensional LOTUS:

$$
\begin{aligned}
\mathbb{E}\left[\sum_{i=1}^{n} x_{i}\right] & =\int_{\mathbb{R}^{n}}\left(\sum_{i=1}^{n} a_{i} x_{i}\right) f_{\overrightarrow{\boldsymbol{X}}}(\overrightarrow{\boldsymbol{x}}) \mathrm{d} x \\
& =\int_{\mathbb{R}^{n}} \sum_{i=1}^{n}\left(a_{i} x_{i} f_{\overrightarrow{\boldsymbol{X}}}(\overrightarrow{\boldsymbol{x}})\right) \mathrm{d} \overrightarrow{\boldsymbol{x}} \\
& =\sum_{i=1}^{n}\left[\int_{\mathbb{R}^{n}} a_{i} x_{i} f_{\overrightarrow{\boldsymbol{x}}}(\overrightarrow{\boldsymbol{x}}) \mathrm{d} \overrightarrow{\boldsymbol{x}}\right]
\end{aligned}
$$

A Useful Result

Theorem: Linearity of Expectation

Given a collection of random variables X_{1}, \cdots, X_{n} and a collection of constants a_{1}, \cdots, a_{n}, we have

$$
\mathbb{E}\left[\sum_{i=1}^{n} a_{i} X_{i}\right]=\sum_{i=1}^{n} a_{i} \mathbb{E}\left[X_{i}\right]
$$

Proof.

- We use the multidimensional LOTUS:

$$
\begin{aligned}
\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right] & =\int_{\mathbb{R}^{n}}\left(\sum_{i=1}^{n} a_{i} x_{i}\right) f_{\overrightarrow{\boldsymbol{X}}}(\overrightarrow{\boldsymbol{x}}) \mathrm{d} x \\
& =\int_{\mathbb{R}^{n}} \sum_{i=1}^{n}\left(a_{i} x_{i} f_{\overrightarrow{\boldsymbol{X}}}(\overrightarrow{\boldsymbol{x}})\right) \mathrm{d} \overrightarrow{\boldsymbol{x}} \\
& =\sum_{i=1}^{n}\left[\int_{\mathbb{R}^{n}} a_{i} x_{i} f_{\overrightarrow{\boldsymbol{x}}}(\overrightarrow{\boldsymbol{x}}) \mathrm{d} \overrightarrow{\boldsymbol{x}}\right] \\
& =\sum_{i=1}^{n} \mathbb{E}\left[a_{i} X_{i}\right]=\sum_{i=1}^{n} a_{i} \mathbb{E}\left[X_{i}\right]
\end{aligned}
$$

A Useful Result

- If the vector notation on the previous slide is too confusing, you can think of things in terms of $n=2$; the proof for general n follows analogously.

$$
\mathbb{E}\left[a_{1} X_{1}+a_{2} X_{2}\right]=\iint_{\mathbb{R}^{2}}\left(a_{1} x_{1}+a_{2} x_{2}\right) f_{x_{1}, x_{2}}\left(x_{1}, x_{2}\right) \mathrm{d} A
$$

A Useful Result

- If the vector notation on the previous slide is too confusing, you can think of things in terms of $n=2$; the proof for general n follows analogously.

$$
\begin{aligned}
\mathbb{E}\left[a_{1} X_{1}+a_{2} X_{2}\right] & =\iint_{\mathbb{R}^{2}}\left(a_{1} x_{1}+a_{2} x_{2}\right) f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right) \mathrm{d} A \\
& =\iint_{\mathbb{R}^{2}}\left[a_{1} x_{1} f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right)+a_{2} x_{2} f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right)\right] \mathrm{d} A
\end{aligned}
$$

A Useful Result

- If the vector notation on the previous slide is too confusing, you can think of things in terms of $n=2$; the proof for general n follows analogously.

$$
\begin{aligned}
\mathbb{E}\left[a_{1} X_{1}+a_{2} X_{2}\right] & =\iint_{\mathbb{R}^{2}}\left(a_{1} x_{1}+a_{2} x_{2}\right) f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right) \mathrm{d} A \\
& =\iint_{\mathbb{R}^{2}}\left[a_{1} x_{1} f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right)+a_{2} x_{2} f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right)\right] \mathrm{d} A \\
& =\iint_{\mathbb{R}^{2}} a_{1} x_{1} f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right) \mathrm{d} A+\iint_{\mathbb{R}^{2}} a_{2} x_{2} f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right) \mathrm{d} A
\end{aligned}
$$

A Useful Result

- If the vector notation on the previous slide is too confusing, you can think of things in terms of $n=2$; the proof for general n follows analogously.

$$
\begin{aligned}
\mathbb{E}\left[a_{1} X_{1}+a_{2} X_{2}\right] & =\iint_{\mathbb{R}^{2}}\left(a_{1} x_{1}+a_{2} x_{2}\right) f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right) \mathrm{d} A \\
& =\iint_{\mathbb{R}^{2}}\left[a_{1} x_{1} f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right)+a_{2} x_{2} f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right)\right] \mathrm{d} A \\
& =\iint_{\mathbb{R}^{2}} a_{1} x_{1} f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right) \mathrm{d} A+\iint_{\mathbb{R}^{2}} a_{2} x_{2} f x_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right) \mathrm{d} A \\
& =\mathbb{E}\left[a_{1} X_{1}\right]+\mathbb{E}\left[a_{2} X_{2}\right]=a_{1} \mathbb{E}\left[X_{1}\right]+a_{2} \mathbb{E}\left[X_{2}\right]
\end{aligned}
$$

