9: Independent Random Variables, Covariance, and

 CorrelationPSTAT 120A: Summer 2022

Ethan P. Marzban
July 14, 2022

University of California, Santa Barbara

Where We've Been

- Axioms of Probability, Probability Spaces, Counting
- Conditional Probabilities, independence, etc.
- Basics of Random Variables (classification, p.m.f., c.m.f., moments)
- Discrete Distributions
- Continuous Distributions
- Transformations of Random Variables
- Double Integrals
- Random Vectors and the basics of multivariate probability

Independence

Definition

Definition: Independence (of 2 Random Variables)

Given two random variables X and Y with marginal p.d.f.'s given by $f_{X}(x)$ and $f_{Y}(y)$, respectively, and joint p.d.f. $f_{X, Y}(x, y)$, we say that X and Y are independent (notated $X \perp Y$) if

$$
f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)
$$

In other words, two random variables are independent if their joint density factors as the product of their marginal densities.

- It turns out that an equivalent definition of independence is that the joint c.d.f. factors as the product of the marginal c.d.f.'s.

Definition

Definition: Independence (of n Random Variables)

Consider a collection of n random variables X_{1}, \cdots, X_{n} with joint p.d.f. $f_{\vec{X}}(\overrightarrow{\boldsymbol{x}})$ and marginal densities $f_{X_{i}}\left(x_{i}\right)$ for $i=1, \cdots, n$.
(1) If $f_{\vec{X}}(\vec{x})=\prod_{i=1}^{n} f_{X_{i}}\left(x_{i}\right)$, then X_{1}, \cdots, X_{n} are independent.
(2) Conversely, if X_{1}, \cdots, X_{n} are independent, then they are jointly continuous with joint density function $f_{\overrightarrow{\boldsymbol{x}}}(\vec{x})=\prod_{i=1}^{n} f_{X_{i}}\left(x_{i}\right)$.

Example

Consider a pair (X, Y) of discrete random variables with joint p.m.f. given by

(a) Find the marginal p.m.f.'s $p_{X}(x)$ and $p_{Y}(y)$ of X and Y respectively.
(b) Compute $\mathbb{E}[X Y]$.
(c) Are X and Y independent? Explain.

A Familiar Example

Suppose (X, Y) is a pair of random variables with joint density given by

$$
f_{X, Y}(x, y)= \begin{cases}2 \cdot e^{-(x+y)} & \text { if } x \leq y<\infty, 0 \leq x<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Are X and Y independent? Explain.

Shortcut for Establishing Dependence

- There exists a shortcut for determining dependence: if the support of (X, Y) is nonrectangular, then X and Y will necessarily be dependent.
- Note that the logical inverse doesn't necessarily follow: just because a support is rectangular doesn't mean we can automatically conclude $X \perp Y$. To establish independence, you must use the definition.

Independence and Expectation

Theorem

Given two random variables (X, Y) with joint p.d.f. $f_{X, Y}(x, y)$, if $X \perp Y$ then $\mathbb{E}[X Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Proof.

- By independence, we have $f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)$.
- Therefore, plugging into the LOTUS we find

$$
\begin{aligned}
\mathbb{E}[X Y] & =\iint_{\mathbb{R}^{2}} x y f_{X, Y}(x, y) \mathrm{d} A \\
& =\iint_{\mathbb{R}^{2}} x y \cdot f_{X}(x) f_{Y}(y) \mathrm{d} A \\
& =\iint_{\mathbb{R}^{2}}\left[x f_{X}(x)\right] \cdot\left[y f_{Y}(y)\right] \mathrm{d} A \\
& =\left(\int_{\mathbb{R}} x f_{X}(x) \mathrm{d} x\right) \cdot\left(\int_{\mathbb{R}} y f_{Y}(y) \mathrm{d} y\right)=\mathbb{E}[X] \cdot \mathbb{E}[Y]
\end{aligned}
$$

Independence and Expectation

Theorem

Given n independent random variables X_{1}, \cdots, X_{n}, we have

$$
\mathbb{E}\left[\prod_{i=1}^{n} X_{i}\right]=\prod_{i=1}^{n} \mathbb{E}\left[X_{i}\right]
$$

Independence and Tranformations

Theorem

If X_{1}, \cdots, X_{n+m} are independent random variables, and if $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and h : $\mathbb{R}^{n} \rightarrow \mathbb{R}$ are real-valued functions, then $g\left(X_{1}, \cdots, X_{n}\right) \perp h\left(X_{n+1}, \cdots, X_{n+m}\right)$. In other words: functions of independent random variables are also independent.

- By the way, we won't talk much about multivariate transformations in this class. But, don't be scared by quantities like $g\left(X_{1}, \cdots, X_{n}\right)$; again, this is just a random variable!

Covariance and Correlation

Leadup

- Recall how our discussion on Variance started: we began with the (seemingly broad) question of "how can we measure the spread of a random variable?"
- With a pair of bivariate random variables (X, Y), we can ask ourselves another question: "how related are X and Y ?"
- As a concrete example, consider taking a stick of length 1 and breaking it into two smaller pieces by picking a breakpoint uniformly along the length of the stick: let X denote the length of the shorter piece and Y denote the length of the longer piece. There is a clear "direct" relationship between X and Y : a one unit increase in X (i.e. making the shorter piece 1 unit longer) corresponds to a 1 unit decrease in Y (makes the longer piece shorten by 1 unit, since the length of the entire rod must remain constant).

Covariance

Definition: Covariance

The covariance of two random variables X and Y is defined as

$$
\operatorname{Cov}(X, Y):=\mathbb{E}\{[X-\mathbb{E}(X)] \cdot[Y-\mathbb{E}(Y)]\}
$$

By expanding out the RHS and simplifying, one can show that covariance is equivalent to

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \cdot \mathbb{E}[Y]
$$

Our Familiar Example, Again!

Suppose (X, Y) is a pair of random variables with joint density given by

$$
f_{X, Y}(x, y)= \begin{cases}2 \cdot e^{-(x+y)} & \text { if } x \leq y<\infty, 0 \leq x<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Compute $\operatorname{Cov}(X, Y)$.

Independence and Covariance

- Now, recall that when $X \perp Y$ we have that $\mathbb{E}[X Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$. This leads to the following interesting observation:

Theorem

If random variables X and Y are independent, then i.e. $\operatorname{Cov}(X, Y)=0$.

- Let me stress something very important: THE CONVERSE IS NOT (IN GENERAL) TRUE! There are several examples of random variables (X, Y) that have zero covariance but are dependent.
- Additionally: we can levarage this fact in some situations to enable us to bypass any need for computation. What I mean is the following: if given a joint p.d.f. $f_{X, Y}(x, y)$ that factors as $f_{X}(x) \cdot f_{Y}(Y)$, we can immediately conclude that $X \perp Y$ and therefore $\operatorname{Cov}(X, Y)=0$. Perhaps something to keep in mind when you're doing your next homework assignment...

Properties of Covariance

Theorem: Bilinearity of Covariance

$$
\operatorname{Cov}\left(\sum_{i=1}^{n} a_{i} X_{i}, \sum_{j=1}^{n} b_{j} Y_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} b_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)
$$

- For example,
$\operatorname{Cov}(a X+b Y, c Z+d W)=a c \operatorname{Cov}(X, Z)+a d \operatorname{Cov}(X, W)+b c \operatorname{Cov}(Y, Z)+b d \operatorname{Cov}(Y, W)$

Theorem: Symmetry of Covariance

$$
\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)
$$

Theorem: Self-Covariance

$$
\operatorname{Cov}(X, X)=\operatorname{Var}(X)
$$

Variance of Linear Combinations

Theorem

$$
\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i<j} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

- Here, the sum on the rightmost end is a double sum over indices i and j such that the i index is strictly less than the j index. For example:

$$
\begin{aligned}
\operatorname{Var}\left(a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}\right)= & a_{1}^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}^{2} \operatorname{Var}\left(X_{2}\right)+a_{3}^{2} \operatorname{Var}\left(X_{3}\right) \\
& +2 a_{1} a_{2} \operatorname{Cov}\left(X_{1}, X_{2}\right)+2 a_{1} a_{3} \operatorname{Cov}\left(X_{1}, X_{3}\right)+2 a_{2} a_{3} \operatorname{Cov}\left(X_{2}, X_{3}\right)
\end{aligned}
$$

- Believe it or not, I find the proof of this theorem to be helpful in remembering its statement!

Variance of Linear Combinations

Proof.

- The first fact we use is that $\operatorname{Var}(X)=\operatorname{Cov}(X, X)$. Therefore,

$$
\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\operatorname{Cov}\left(\sum_{i=1}^{n} a_{i} X_{i}, \sum_{j=1}^{n} a_{j} X_{j}\right)
$$

[Note that in these sorts of double-sum computations it is very important to not reuse the same index multiple times, lest you get a bit confused and forget which indices are actually alike!]

- Now we use Bilinearity:

$$
\begin{aligned}
\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right) & =\operatorname{Cov}\left(\sum_{i=1}^{n} a_{i} X_{i}, \sum_{j=1}^{n} a_{j} X_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
\end{aligned}
$$

Variance of Linear Combinations

Proof.

- Next, we break the double sum up into two sums, using the following division: we consider the case where $i=j$ separate from where $i \neq j$:

$$
\begin{aligned}
\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right) & =\operatorname{Cov}\left(\sum_{i=1}^{n} a_{i} X_{i}, \sum_{j=1}^{n} a_{j} X_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =\sum_{i=j} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)+\sum_{i \neq j} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =\sum_{i=1}^{n} a_{i}^{2} \operatorname{Cov}\left(X_{i}, X_{i}\right)+\sum_{i \neq j} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)+\sum_{i \neq j} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
\end{aligned}
$$

Variance of Linear Combinations

Proof.

- Finally, we consider the rightmost sum: by the symmetry property of the covariance operator, we will have quite a few duplicated terms [for instance, $\left.\operatorname{Cov}\left(X_{1}, X_{2}\right)=\operatorname{Cov}\left(X_{2}, X_{1}\right)\right]$. Therefore, we can consider summing only along the indices for which $i<j$, and then multiply by 2 :

$$
\begin{aligned}
\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right) & =\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)+\sum_{i \neq j} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i<j} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
\end{aligned}
$$

Example

Suppose (X, Y) is a pair of random variables with joint density given by

$$
f_{X, Y}(x, y)= \begin{cases}2 \cdot e^{-(x+y)} & \text { if } x \leq y<\infty, 0 \leq x<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Compute $\operatorname{Var}(X-Y)$.

Example

Let X_{1}, \cdots, X_{n} be a sequence of random variables with the following covariance structure:

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)= \begin{cases}1 & \text { if } i=j \\ 0.5 & \text { if }|i-j|=1 \\ 0 & \text { otherwise }\end{cases}
$$

Compute $\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)$

Independence and Variance

- Finally, let's tie together independence and variance.

Theorem

If X_{1}, \cdots, X_{n} are independent and if $a_{1}, \cdots, a_{n} \in \mathbb{R}$ are fixed constants, then

$$
\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)
$$

In other words, the only time we are able to pass a variance through a sum is when the random variables in the sum are independent.

Correlation

- Let's return to the notion of covariance for a moment.
- In general, there are no bounds on $\operatorname{Cov}(X, Y)$.
- A positive covariance means that X and Y are positively related (i.e. when X goes up, so does Y) where as a negative covariance means that X and Y are negatively related (i.e. when X goes up, Y goes down).
- The issue is the following: the magnitude of covariance doesn't give us a whole lot of information. That is, just because $\operatorname{Cov}(X, Y)>\operatorname{Cov}(Z, W)>0$ doesn't mean that X and Y are "more strongly" related than Z and W. (The issue lies actually with standard deviations; random variables with large standard deviations tend to dominate covariances).
- For this reason, statisticians like to examine a standardized version of covariance:

Definition: Correlation

The correlation between two random variables X and Y is defined to be

$$
\operatorname{Corr}(X, Y):=\frac{\operatorname{Cov}(X, Y)}{\operatorname{SD}(X) \cdot \operatorname{SD}(Y)}
$$

- It turns out that correlations are always bound between -1 and 1 , inclusive.

Example

Suppose (X, Y) is a pair of random variables with joint density given by

$$
f_{X, Y}(x, y)= \begin{cases}2 \cdot e^{-(x+y)} & \text { if } x \leq y<\infty, 0 \leq x<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Compute $\operatorname{Corr}(X, Y)$

Covariance Matrix

- By the way, that trick we used in the previous example of writing down a table consisting of the covariances between any two X_{i} and X_{j} is so useful, it has an associated mathematical quantity:

Definition: Covariance Matrix

Given a random vector $\overrightarrow{\boldsymbol{X}}$, we define the covariance matrix of $\overrightarrow{\boldsymbol{X}}$ to be the matrix $\boldsymbol{\Sigma}$ prescribed by

$$
(\boldsymbol{\Sigma})_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

In other words, the $(i, j)^{\text {th }}$ element of $\boldsymbol{\Sigma}$ is $\operatorname{Cov}\left(X_{i}, X_{j}\right)$.

- So, the diagonal entries of $\boldsymbol{\Sigma}$ represent the variances.
- Question: If $\boldsymbol{\Sigma}$ is diagonal, can we conclude the X_{i} 's to be independent? No! We can only conclude them to be uncorrelated.

Example

Let $\overrightarrow{\boldsymbol{X}}=\left(X_{1}, X_{2}, X_{3}\right)$ denote a random vector with variance-covariance matrix given by

$$
\boldsymbol{\Sigma}=\left(\begin{array}{rrr}
10 & -4 & 3 \\
-4 & 5 & 2 \\
3 & 2 & 5
\end{array}\right)
$$

- $\operatorname{Var}\left(X_{1}+X_{3}\right)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+2 \operatorname{Cov}\left(X_{1}, X_{3}\right)=(10)+(5)+(6)=21$

Independent and Identically Distributed (I.I.D.)

- I'd like to leave off with one of the MOST IMPORTANT (and I'm not kidding!) acronyms in all of statistics:

Definition: I.I.D.

Suppose X_{1}, \cdots, X_{n} are independent random variables that all follow the same distribution (from a marginal point of view). We then say that the n random variables are independent and identically distributed, or just i.i.d. for short.

- As an example, suppose we have

$$
x_{1}, \cdots, x_{n} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Exp}(\lambda)
$$

What this means is that (1) the X_{i}^{\prime} s are all independent, and (2) each X_{i} follows the $\operatorname{Exp}(\lambda)$ distribution. Consequently, the joint density is given by

$$
\left.f_{\vec{x}}(\vec{x})=\lambda^{n} e^{-\lambda \sum_{i=1}^{n} x_{i}} \cdot \mathbb{1}_{\left\{\text {all } x_{i}^{\prime} s\right.} \text { greater than } 0\right\}
$$

A Quick Look Ahead

- I've offhandedly mentioned quantities like $\sum_{i=1}^{n} a_{i} X_{i}$ quite a bit during this lecture.
- A natural question might be: "...huh?"
- Perhaps think of it this way: the function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ prescribed by $\overrightarrow{\boldsymbol{x}} \mapsto \sum_{i=1}^{n} a_{i} x_{i}$ is, well, a function! A random vector $\overrightarrow{\boldsymbol{X}}$ is a function from Ω to \mathbb{R}^{n}. Hence, $(g \circ X): \Omega \rightarrow \mathbb{R}$, meaning $g(\overrightarrow{\boldsymbol{X}})=\sum_{i=1}^{n} a_{i} X_{i}$ is just a random variable!
- We've already seen how to compute its mean and variance; coming up, we'll talk about how to get more information about this random variable.

