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Where We’ve Been

• Axioms of Probability, Probability Spaces, Counting• Conditional Probabilities, independence, etc.• Basics of Random Variables (classification, p.m.f., c.m.f., moments)• Discrete Distributions• Continuous Distributions• Transformations of Random Variables• Double Integrals• Random Vectors and the basics of multivariate probability
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Independence



Definition

Definition: Independence (of 2 Random Variables)

Given two random variables X and Y with marginal p.d.f.’s given by fX (x)and fY (y ), respectively, and joint p.d.f. fX ,Y (x , y ), we say that X and Y are
independent (notated X ⊥ Y ) if

fX ,Y (x , y ) = fX (x) · fY (y )
In other words, two random variables are independent if their joint densityfactors as the product of their marginal densities.

• It turns out that an equivalent definition of independence is that the joint c.d.f.factors as the product of the marginal c.d.f.’s.
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Definition

Definition: Independence (of n Random Variables)

Consider a collection of n random variables X1, · · · ,Xn with joint p.d.f. fX⃗ (x⃗ )and marginal densities fXi
(xi ) for i = 1, · · · , n.(1) If fX⃗ (x⃗ ) =∏n

i=1 fXi
(xi ), then X1, · · · ,Xn are independent.(2) Conversely, if X1, · · · ,Xn are independent, then they are jointlycontinuous with joint density function fX⃗ (x⃗ ) =∏n

i=1 fXi
(xi ).
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Example

Consider a pair (X ,Y ) of discrete random variables with joint p.m.f. given by
Y

1 2 3 4

0 0.1 0.1 0.1 0

X 1 0 0.2 0.1 0.1

2 0.1 0.1 0 0.1

(a) Find the marginal p.m.f.’s pX (x) and pY (y ) of X and Y respectively.(b) Compute E[XY ].(c) Are X and Y independent? Explain.
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A Familiar Example

Suppose (X ,Y ) is a pair of random variables with joint density given by
fX ,Y (x , y ) = {2 · e−(x+y ) if x ≤ y < ∞, 0 ≤ x < ∞

0 otherwise
Are X and Y independent? Explain.
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Shortcut for Establishing Dependence

• There exists a shortcut for determining dependence: if the support of (X ,Y ) isnonrectangular, then X and Y will necessarily be dependent.• Note that the logical inverse doesn’t necessarily follow: just because a support isrectangular doesn’t mean we can automatically conclude X ⊥ Y . To establishindependence, you must use the definition.
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Independence and Expectation

Theorem

Given two random variables (X ,Y ) with joint p.d.f. fX ,Y (x , y ), if X ⊥ Y then
E[XY ] = E[X ] ·E[Y ]

Proof.• By independence, we have fX ,Y (x , y ) = fX (x) · fY (y ).• Therefore, plugging into the LOTUS we find
E[XY ] = x

R2

xyfX ,Y (x , y ) dA
= x

R2

xy · fX (x)fY (y ) dA
= x

R2

[xfX (x)] · [yfY (y )] dA
= (ż

R

xfX (x) dx) ·
(

ż

R

yfY (y ) dy) = E[X ] ·E[Y ]
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Independence and Expectation

Theorem

Given n independent random variables X1, · · · ,Xn , we have
E

[
n∏

i=1

Xi

] = n∏
i=1

E[Xi ]
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Independence and Tranformations

Theorem

If X1, · · · ,Xn+m are independent random variables, and if g : Rn → R and h :
Rn → R are real-valued functions, then g (X1, · · · ,Xn) ⊥ h(Xn+1, · · · ,Xn+m). Inother words: functions of independent random variables are also independent.

• By the way, we won’t talk much about multivariate transformations in this class.But, don’t be scared by quantities like g (X1, · · · ,Xn); again, this is just a randomvariable!
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Covariance and Correlation



Leadup

• Recall how our discussion on Variance started: we began with the (seeminglybroad) question of “how can we measure the spread of a random variable?”• With a pair of bivariate random variables (X ,Y ), we can ask ourselves anotherquestion: “how related are X and Y ?”• As a concrete example, consider taking a stick of length 1 and breaking it intotwo smaller pieces by picking a breakpoint uniformly along the length of thestick: let X denote the length of the shorter piece and Y denote the length of thelonger piece. There is a clear “direct” relationship between X and Y : a one unitincrease in X (i.e. making the shorter piece 1 unit longer) corresponds to a 1 unitdecrease in Y (makes the longer piece shorten by 1 unit, since the length of theentire rod must remain constant).
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Covariance

Definition: Covariance

The covariance of two random variables X and Y is defined as
Cov(X ,Y ) := E {[X −E(X )] · [Y −E(Y )]}

By expanding out the RHS and simplifying, one can show that covariance isequivalent to Cov(X ,Y ) = E[XY ] −E[X ] ·E[Y ]
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Our Familiar Example, Again!

Suppose (X ,Y ) is a pair of random variables with joint density given by
fX ,Y (x , y ) = {2 · e−(x+y ) if x ≤ y < ∞, 0 ≤ x < ∞

0 otherwise
Compute Cov(X ,Y ).

Independence Covariance and Correlation14



Independence and Covariance

• Now, recall that when X ⊥ Y we have that E[XY ] = E[X ] ·E[Y ]. This leads tothe following interesting observation:
Theorem

If random variables X and Y are independent, then i.e. Cov(X ,Y ) = 0.
• Let me stress something very important: THE CONVERSE IS NOT (IN

GENERAL) TRUE! There are several examples of random variables (X ,Y ) thathave zero covariance but are dependent.• Additionally: we can levarage this fact in some situations to enable us to bypassany need for computation. What I mean is the following: if given a joint p.d.f.
fX ,Y (x , y ) that factors as fX (x) · fY (Y ), we can immediately conclude that X ⊥ Yand therefore Cov(X ,Y ) = 0. Perhaps something to keep in mind when you’redoing your next homework assignment...
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Properties of Covariance

Theorem: Bilinearity of Covariance

Cov n∑
i=1

aiXi ,
n∑

j=1

bjYj

 = n∑
i=1

n∑
j=1

aibjCov(Xi ,Yj )
• For example,

Cov(aX+bY , cZ+dW ) = acCov(X ,Z )+adCov(X ,W )+bcCov(Y ,Z )+bdCov(Y ,W )
Theorem: Symmetry of Covariance

Cov(X ,Y ) = Cov(Y ,X )
Theorem: Self-Covariance

Cov(X ,X ) = Var(X )
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Variance of Linear Combinations

Theorem

Var( n∑
i=1

aiXi

) = n∑
i=1

a2i Var(Xi ) + 2
∑
i<j

aiajCov(Xi ,Xj )

• Here, the sum on the rightmost end is a double sum over indices i and j such thatthe i index is strictly less than the j index. For example:
Var(a1X1 + a2X2 + a3X3) = a21Var(X1) + a22Var(X2) + a23Var(X3)+ 2a1a2Cov(X1,X2) + 2a1a3Cov(X1,X3) + 2a2a3Cov(X2,X3)

• Believe it or not, I find the proof of this theorem to be helpful in remembering itsstatement!
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Variance of Linear Combinations

Proof.• The first fact we use is that Var(X ) = Cov(X ,X ). Therefore,
Var( n∑

i=1

aiXi

) = Cov n∑
i=1

aiXi ,
n∑

j=1

ajXj


[Note that in these sorts of double-sum computations it is very important to notreuse the same index multiple times, lest you get a bit confused and forget whichindices are actually alike!]

• Now we use Bilinearity:
Var( n∑

i=1

aiXi

) = Cov n∑
i=1

aiXi ,
n∑

j=1

ajXj


= n∑

i=1

n∑
j=1

aiajCov(Xi ,Xj )
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Variance of Linear Combinations

Proof.• Next, we break the double sum up into two sums, using the following division: weconsider the case where i = j separate from where i ̸= j :
Var( n∑

i=1

aiXi

) = Cov n∑
i=1

aiXi ,
n∑

j=1

ajXj


= n∑

i=1

n∑
j=1

aiajCov(Xi ,Xj )
=∑

i=j

aiajCov(Xi ,Xj ) +∑
i ̸=j

aiajCov(Xi ,Xj )
= n∑

i=1

a2i Cov(Xi ,Xi ) +∑
i ̸=j

aiajCov(Xi ,Xj )
= n∑

i=1

a2i Var(Xi ) +∑
i ̸=j

aiajCov(Xi ,Xj )
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Variance of Linear Combinations

Proof.• Finally, we consider the rightmost sum: by the symmetry property of thecovariance operator, we will have quite a few duplicated terms [for instance,Cov(X1,X2) = Cov(X2,X1)]. Therefore, we can consider summing only along theindices for which i < j , and then multiply by 2:
Var( n∑

i=1

aiXi

) = n∑
i=1

a2i Var(Xi ) +∑
i ̸=j

aiajCov(Xi ,Xj )
= n∑

i=1

a2i Var(Xi ) + 2
∑
i<j

aiajCov(Xi ,Xj )
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Example

Suppose (X ,Y ) is a pair of random variables with joint density given by
fX ,Y (x , y ) = {2 · e−(x+y ) if x ≤ y < ∞, 0 ≤ x < ∞

0 otherwise
Compute Var(X − Y ).
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Example

Let X1, · · · ,Xn be a sequence of random variables with the following covariancestructure:
Cov(Xi ,Xj ) =


1 if i = j

0.5 if |i − j | = 1

0 otherwise
Compute Var (∑n

i=1 Xi

)
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Independence and Variance

• Finally, let’s tie together independence and variance.
Theorem

If X1, · · · ,Xn are independent and if a1, · · · , an ∈ R are fixed constants, then
Var( n∑

i=1

aiXi

) = n∑
i=1

a2i Var(Xi )
In other words, the only time we are able to pass a variance through a sum iswhen the random variables in the sum are independent.
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Correlation

• Let’s return to the notion of covariance for a moment.• In general, there are no bounds on Cov(X ,Y ).• A positive covariance means that X and Y are positively related (i.e. when Xgoes up, so does Y ) where as a negative covariance means that X and Y arenegatively related (i.e. when X goes up, Y goes down).• The issue is the following: the magnitude of covariance doesn’t give us a wholelot of information. That is, just because Cov(X ,Y ) > Cov(Z ,W ) > 0 doesn’t meanthat X and Y are “more strongly” related than Z and W . (The issue lies actuallywith standard deviations; random variables with large standard deviations tend todominate covariances).• For this reason, statisticians like to examine a standardized version of covariance:
Definition: Correlation

The correlation between two random variables X and Y is defined to be
Corr(X ,Y ) := Cov(X ,Y )SD(X ) · SD(Y )

• It turns out that correlations are always bound between −1 and 1, inclusive.
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Example

Suppose (X ,Y ) is a pair of random variables with joint density given by
fX ,Y (x , y ) = {2 · e−(x+y ) if x ≤ y < ∞, 0 ≤ x < ∞

0 otherwise
Compute Corr(X ,Y )
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Covariance Matrix

• By the way, that trick we used in the previous example of writing down a tableconsisting of the covariances between any two Xi and Xj is so useful, it has anassociated mathematical quantity:
Definition: Covariance Matrix

Given a random vector X⃗ , we define the covariance matrix of X⃗ to be thematrix Σ prescribed by (Σ)ij = Cov(Xi ,Xj )In other words, the (i , j)th element of Σ is Cov(Xi ,Xj ).
• So, the diagonal entries of Σ represent the variances.• Question: If Σ is diagonal, can we conclude the Xi ’s to be independent? No! Wecan only conclude them to be uncorrelated.
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Example

Let X⃗ = (X1,X2,X3) denote a random vector with variance-covariance matrix given by
Σ =

 10 −4 3

−4 5 2

3 2 5



• Var(X1 + X3) = Var(X1) + Var(X2) + 2Cov(X1,X3) = (10) + (5) + (6) = 21
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Independent and Identically Distributed (I.I.D.)

• I’d like to leave off with one of the MOST IMPORTANT (and I’m not kidding!)acronyms in all of statistics:
Definition: I.I.D.

Suppose X1, · · · ,Xn are independent random variables that all follow the samedistribution (from a marginal point of view). We then say that the n randomvariables are independent and identically distributed, or just i.i.d. for short.
• As an example, suppose we have

X1, · · · ,Xn
i.i.d.∼ Exp(λ)

What this means is that (1) the X ′
i s are all independent, and (2) each Xi followsthe Exp(λ) distribution. Consequently, the joint density is given by

fX⃗ (x⃗ ) = λne−λ
∑n

i=1 xi · 1{all xi ’s greater than 0}
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A Quick Look Ahead

• I’ve offhandedly mentioned quantities like ∑n
i=1 aiXi quite a bit during thislecture.• A natural question might be: “...huh?”• Perhaps think of it this way: the function g : Rn → R prescribed by

x⃗ 7→
∑n

i=1 aixi is, well, a function! A random vector X⃗ is a function from Ω to Rn .Hence, (g ◦ X ) : Ω → R, meaning g (X⃗ ) =∑n
i=1 aiXi is just a random variable!• We’ve already seen how to compute its mean and variance; coming up, we’ll talkabout how to get more information about this random variable.
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