
EXAMPLES FROM SLIDE DECK 9
PSTAT 120A: Summer 2022 Instructor: Ethan P. Marzban

1. Suppose (X, Y) is a pair of random variables with joint density given by

fX,Y(x, y) =

{
c · e−(x+y) if x ≤ y < ∞, 0 ≤ x < ∞
0 otherwise

(a) Find the value of c that ensures fX,Y(x, y) is a valid joint p.d.f..

Solution: As always, we begin by sketching the support:

x

y
y = x

We now select the value of c that ensures the joint p.d.f. integrates to unity,
when integrated over the support. For this particular setup, neither order of
integration is significantly more difficult than the other. If we used dy dx,
then we compute
ż ∞

0

ż ∞

x
ce−(x+y) dy dx =

ż ∞

0
ce−x

(
ż ∞

x
e−y dy

)
dx

= c
ż ∞

0
e−x · e−x dx = c

ż ∞

0
e−2x dx =

c
2

!
= 1 =⇒ c = 2

If instead we had used dx dy, we would have
ż ∞

0

ż y

0
ce−(x+y) dx dy =

ż ∞

0
ce−y

(
ż y

0
e−x dx

)
dy

= c
ż ∞

0
e−y ·

(
1 − e−y) dx = c

ż ∞

0
(e−y − e−2y) dy

= c
(

1 − 1
2

)
=

c
2

!
= 1 =⇒ c = 2

As an Aside: I personally like to set up these types of integrals, whenever
possible, to include an ∞ in the upper limit of integration, especially when
the integrand contains exponential functions. This is because e−∞ = 0 which
often simplifies things a bit.

(b) Compute P(X ≥ 0.5, Y ≥ 0.5)



PSTAT 120A: SUMMER ’22 EXAMPLES FROM SLIDE DECK 9Instructor: Ethan P. Marzban

Solution: When we write P(X ≥ 0.5, Y ≥ 0.5) we really mean

P ((X, Y) ∈ {(X, Y) : X ≥ 0.5, Y ≥ 0.5})
meaning

P(X ≥ 0.5, Y ≥ 0.5) =
żż

{(x,y):x≥0.5, y≥0.5}

fX,Y(x, y) dx

Now, we know that fX,Y(x, y) = 0 whenever (x, y) is not in the support of
(X, Y). In other words, the integrand above is not nonzero over the entire
region {(x, y) : x ≥ 0.5, y ≥ 0.5} but rather only over the intersection of
{(x, y) : x ≥ 0.5, y ≥ 0.5} and the support. Therefore, the integral above is
equivalent to computing

żż

R
2e−(x+y) dA

where R is the region

x

y
y = x

0.5

0.5

Once again, either order of integration is fine. Using dy dx we have

P(X + Y ≥ 2) =
ż ∞

0.5

ż ∞

x
2e−(x+y) dx dy

=

ż ∞

0.5
2e−x

ż ∞

x
e−y dy dx =

ż ∞

0.5
2e−2x dx = e−0.5·2 = e−1

Using dx dy, we have

P(X + Y ≥ 2) =
ż ∞

0.5

ż y

0.5
2e−(x+y) dx dy

=

ż ∞

0.5
2e−y

ż y

0.5
e−x dx dy

=

ż ∞

0.5
2e−y

(
e−0.5 − e−y

)
dy

= 2
ż ∞

0.5

(
e−(y+0.5) − e−2y

)
dy

= 2e−0.5
ż ∞

0.5
e−y dy −

ż ∞

0.5
2e−2y dy

= 2e−0.5 · e−0.5 − e−2·0.5 = 2e−1 − e−1 = e−1
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(c) Compute E[XY]

Solution: We return to the region sketched in part (a) [i.e. the support]. The
multivariate analog of the LOTUS tells us

E[g(X, Y)] =
żż

R2
g(x, y) fX,Y(x, y) dA

meaning, using g(x, y) = xy, we have

E[XY] =
żż

R2
xy fX,Y(x, y) dA

Using dy dx we have

E[XY] =
ż ∞

0

ż ∞

x
xy · 2e−(x+y) dy dx

= 2
ż ∞

0
xe−x

ż ∞

x
ye−y dy dx

= 2
ż ∞

0
xe−x [−e−y(y + 1)

]y=∞
y=x dx

= 2
ż ∞

0
xe−xe−x(x + 1) dx

= 2
ż ∞

0
(x2e−2x + xe−2x) dx

= 2
[

Γ(3)
23

ż ∞

0

23

Γ(3)
· x3−1e−2x dx +

Γ(2)
22

ż ∞

0

22

Γ(2)
· x2−1e−2x dx

]
= 2

[
Γ(3)
23 +

Γ(2)
22

]
=

Γ(3)
4

+
Γ(2)

2
=

2
4
+

1
2
= 1

The order dx dy is a bit more tedious, so I recommend avoiding using that
order for this particular part.

(d) Find fX(x), the marginal density of X.

Solution: To find the density of X, we integrate out y. The question becomes:
what should the limits of our integral be? Well, it is true that

fX,Y(x, y) =
ż ∞

−∞
fX,Y(x, y) dy

it’s just that the integrand is zero for a significant portion of the the interval
over which we are integrating!
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Let me demonstrate the detailed way of thinking about this- it involves indi-
cators. We can write

fX,Y(x, y) = 2e−(x+y) · 1{(x,y):y≥x, x≥0}

Note that we can rewrite the density as

fX,Y(x, y) = 2e−(x+y) · 1{x≥0} · 1{y≥x}

Therefore,

fX,Y(x, y) =
ż ∞

−∞
fX,Y(x, y) dy

=

ż ∞

−∞
2e−xe−y · 1{x≥0} · 1{y≥x} dy

We can safely pull everything involving only x outside of the integral:

fX,Y(x, y) =
ż ∞

−∞
fX,Y(x, y) dy

=

ż ∞

−∞
2e−xe−y · 1{x≥0} · 1{y≥x} dy

= 2e−x · 1{x≥0} ·
ż ∞

−∞
e−y1{y≥x} dx

Now it is perhaps clearer what our limits of integration are; the integrand is
nonzero only when y ≥ x, meaning

fX,Y(x, y) =
ż ∞

−∞
fX,Y(x, y) dy

=

ż ∞

−∞
2e−xe−y · 1{x≥0} · 1{y≥x} dy

= 2e−x · 1{x≥0} ·
ż ∞

−∞
e−y1{y≥x} dx

= 2e−x · 1{x≥0} ·
ż ∞

x
e−y dy = 2e−2x · 1{x≥0}

which actually allows us to recognize X ∼ Exp(2) .

One benefit of this method of thinking about the problem is that we see that
the support of X is also built into our computations!

(e) Find fY(y), the marginal density of Y.
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Solution: Let’s play the same game as we did in part (d) above. Now, how-
ever, we will rewrite the joint as

fX,Y(x, y) = 2e−(x+y) · 1{(x,y):0≤x≤y, y≥0}

(try and convince yourself that this is in fact the same density as before! All
I’ve done is view R as a Type II region as opposed to a Type I region.) Now
we compute

fY(y) =
ż ∞

−∞
fX,Y(x, y) dx

=

ż ∞

−∞
2e−xe−y · 1{0≤x≤y} · 1{y≥0} dx

= 2e−y · 1{y≥0} ·
ż ∞

−∞
e−x · 1{0≤x≤y} dx

= 2e−y · 1{y≥0}

ż y

0
e−x dx = 2e−y (1 − e−y) · 1{y≥0}

(f) Are X and Y independent? Explain.

Solution: There are a few acceptable explanations. The first one utilizes the
definition of independence: we see that

fX,Y(x, y) = 2e−2x · 1{x≥0} · 2e−y (1 − e−y) · 1{y≥0}

= 4e−(x+y) · 1{(x,y):x≥0, y≥0}

̸= 2e−(x+y) · 1{(x,y):y≥x, x≥0} = fX,Y(x, y)

which shows X and Y are NOT independent. The other justification stems
from noting that the support is nonrectangular, and therefore X and Y must
be dependent.

(g) Compute Cov(X, Y).

Solution: Recall that

Cov(X, Y) = E[XY]−E[X] ·E[Y] = (1)−
(

1
2

)(
3
2

)
= 1 − 3

4
=

1
4

(I leave it to you to figure out how I computed E[X] and E[Y]).

(h) Compute Var(X − Y)
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Solution: In general,

Var(aX + bY) = a2Var(X) + b2Var(Y) + 2abCov(X, Y)

Plugging in a = 1 and b = −1 yields

Var(X − Y) = (1)2Var(X) + (−1)2Var(Y) + 2(1)(−1)Cov(X, Y)

= Var(X) + Var(Y)− 2Cov(X, Y) =
1
4
+

5
4
− 2

(
1
4

)
= 1

(I leave it to you to figure out how I computed Var(X) and Var(Y)).

2. Consider a pair (X, Y) of discrete random variables with joint p.m.f. given by

Y
1 2 3 4

0 0.1 0.1 0.1 0

X 1 0 0.2 0.1 0.1

2 0.1 0.1 0 0.1

(a) Find the marginal p.m.f.’s pX(x) and pY(y) of X and Y respectively.

Solution: We compute the row- and column-sums

Y
1 2 3 4

0 0.1 0.1 0.1 0 0.3

X 1 0 0.2 0.1 0.1 0.4

2 0.1 0.1 0 0.1 0.3

0.2 0.4 0.2 0.2 1

This allows us to read off the marginal p.m.f.’s of X and Y:

k 0 1 2
pX(k) 0.3 0.4 0.3 ;

k 1 2 3 4
pY(k) 0.2 0.4 0.2 0.2

(b) Compute E[XY].
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Solution: By the LOTUS,

E[XY] =
2

∑
x=0

4

∑
y=1

xypX,Y(x, y)

= (0)(1)pX,Y(0, 1) + (0)(2)pX,Y(0, 2) + (0)(3)pX,Y(0, 3) + (0)(4)pX,Y(0, 4)
+ (1)(1)pX,Y(1, 1) + (1)(2)pX,Y(1, 2) + (1)(3)pX,Y(1, 3) + (1, 4)pX,Y(1, 4)
+ (2)(1)pX,Y(2, 1) + (2)(2)pX,Y(2, 2) + (2)(3)pX,Y(2, 3) + (2)(4)pX,Y(2, 4)

= (0)(1)(0.1) + (0)(2)(0.1) + (0)(3)(0.1) + (0)(4)(0)
+ (1)(1)(0) + (1)(2)(0.2) + (1)(3)(0.1) + (1)(4)(0.1)

+ (2)(1)(0.1) + (2)(2)(0.1) + (2)(3)(0) + (2)(4)(0.1) = 2.5

(c) Are X and Y independent? Explain.

Solution: If X and Y were independent, then we would have

pX,Y(x, y) = pX(x) · pY(y) ∀(x, y) ∈ {0, 1, 2} × {1, 2, 3, 4}

However, we see

pX(1) · pY(1) = (0.4)(0.2) = 0.08 ̸= 0 = pX,Y(1, 1)

Hence, this is enough for us to conclude that X and Y are NOT independent.
By the way, (1, 1) was not the only point we could have used; there are several
other points (x, y) for which pX,Y(x, y) ̸= pX(x) · pY(y). But, to establish
dependence, we need only one such point.

3. Let X1, · · · , Xn be a sequence of random variables with the following covariance
structure:

Cov(Xi, Xj) =


1 if i = j
0.5 if |i − j| = 1
0 otherwise

Compute Var (∑n
i=1 Xi)

Solution: In general,

Var

(
n

∑
i=1

Xi

)
=

n

∑
i=1

Xi + 2 ∑
i<j

Cov(Xi, Xj)
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Let’s focus on this second sum. We know that, by construction, Cov(Xi, Xj) =
0 whenever i and j are more than 1 units away from each other. Additionally,
whenever i and j are exactly 1 unit away from each other the covariance is simply
0.5. Therefore, we have some number of copies of (0.5); the exact number of copies
is the number of indices i and j such that both i and j are in the set {1, · · · , n} and i
and j are one unit apart from each other. Upon inspection, we see there are (n− 1)
such indices, meaning

∑
i<j

Cov(Xi, Xj) = (n − 1)(0.5)

and so

Var

(
n

∑
i=1

Xi

)
= n(1) + 2(n − 1)(0.5) = n + n − 1 = 2n − 1

If the argument for computing ∑i<j Cov(Xi, Xj) is a bit too abstract, we can ex-
plicitly construct a table which displays Cov(Xi, Xj) for all indices i and j:

(i)
1 2 3 4 · · · n

1 1 0.5 0 0 · · · n
2 0.5 1 0.5 0 · · · 0

(j) 3 0 0.5 1 0.5 · · · 0
4 0 0 0.5 1 · · · 0
...

...
...

...
... . . . ...

n 0 0 0 0 · · · 1

Here we can explicitly see that there are precisely (n − 1) terms equal to 0.5 that
lie below the diagonal (remember, elements below the diagonal correspond to
indicies (i, j) where i < j).
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