NAME: \qquad
SECTION (circle one): 3:30-4:20pm (Lucas)

Instructions:

- You will have 55 minutes to complete this exam.
- You are allowed the use of a single 8.5×11-inch sheet, front and back, of notes. You are also permitted the use of calculators; the use of any and all other electronic devices (laptops, cell phones, etc.) is prohibited.
- Unless otherwise specified, simplification is not needed; however, all integrals and infinite sums (unless otherwise specified) must be evaluated.
- One exception is that, whenever applicable, answers may be left in terms of Φ, the standard normal c.d.f..
- Problem 9(c) is a bonus question; please note that bonus questions will be graded on an all-or-nothing scale.
- Good Luck!!!

Honor Code: In signing my name below, I certify that all work appearing on this exam is entirely my own and not copied from any external source. I further certify that I have not received any unauthorized aid while taking this exam.

Multiple Choice Questions:

| Question: | 1 | 2 | 3 | 4 | 5 | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Points: | 1 | 1 | 1 | 1 | 1 | 5 |
| Score: | | | | | | |

Short-Answer Questions:

Question:	6	7	8	9	Total
Points:	5	11	8	6	30
Score:					

1 Multiple Choice Questions

Please fill in the bubble(s) on the exam below corresponding to your answer. You do not need to submit any additional work for these questions.

1. Which of the following statements is true in general?Pairwise independence implies mutual independence.Two mutually dependent events can be conditionally independentThere are 2^{n} computations needed to establish the mutual independence of n events
Pairwise independence is a stronger condition than mutual independence.All of the above answer choices are false.
2. Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and three events $A, B, C \in \mathcal{F}$, which of the following correctly computes $\mathbb{P}\left(A_{1} \cup A_{2} \cup A_{3}\right)$?$\mathbb{P}\left(A_{1}\right)+\mathbb{P}\left(A_{2}\right)+\mathbb{P}\left(A_{3}\right)$$1-\mathbb{P}\left(A_{1}^{\complement}\right) \cdot \mathbb{P}\left(A_{2}^{\complement} \mid A_{1}^{\complement}\right) \cdot \mathbb{P}\left(A_{3}^{\complement} \mid A_{1}^{\complement} \cap A_{2}^{\complement}\right)$$\mathbb{P}\left(A_{1}\right) \cdot \mathbb{P}\left(A_{2}\right) \cdot \mathbb{P}\left(A_{3}\right)$$1-\mathbb{P}\left(A_{1}\right)-\mathbb{P}\left(A_{2}\right)-\mathbb{P}\left(A_{3}\right)$None of the other answer choices
3. Fill in the Blanks: Discrete random variables have state spaces that are \qquad , [1pts.] whereas continuous random variables have state spaces that are \qquad .finite; infinitecountable; uncountableat most countable; uncountableuncountable; at most countableuncountable; countableNone of the above.
4. Consider a random variable X with p.m.f. given by

$$
\begin{array}{r|cc}
\boldsymbol{k} & -1 & 2 \\
\hline p_{X}(k) & 1 / 4 & 3 / 4
\end{array}
$$

Which of the following is the correct value of $\mathbb{E}[X]$?
$\bigcirc 0$
(1/2
〇 $3 / 4$
$\bigcirc 1$
5/4
None of the above
5. In a bag of 100 marbles, 40 are blue and the remaining 60 are gold. Yaz draws marbles one by one at random, replacing the marble each time. If X denotes the number of marbles (including the final marble) Yaz has to draw before she observes her 3rd blue marble, which of the following accurately describes the distribution of X ?Bern(40)
$\bigcirc \operatorname{Bern}(0.4)$
$\bigcirc \operatorname{Bin}(3,0.4)$
$\bigcirc \operatorname{NegBin}(40,0.4)$
$\bigcirc \operatorname{NegBin}(3,0.4)$HyperGeom(40,100,3)
\bigcirc Poisson(0.4)None of the above.

2 Short Answer Questions

Please mark your final answers in the spaces provided below each question. Be sure to show all of your work!
6. Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and suppose A and B are two events. Prove the identity

$$
\mathbb{P}(A \backslash B)=\mathbb{P}(A) \cdot \mathbb{P}\left(B^{\complement} \mid A\right)
$$

7. Let X be a continuous random variable with probability density function (p.d.f.) given by

$$
f_{X}(x)= \begin{cases}\frac{2}{25} \cdot x & \text { if } 0 \leq x \leq 5 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Verify that $f_{X}(x)$ is a valid probability density function.
(b) Compute

Show all of your steps, including any integration you perform!
(c) Find $F_{X}(x)$, the cumulative distribution function (c.d.f.) of X. Be sure to consider all cases!
8. The swanky new GauchoStay hotel is under construction! But, things are a bit behind schedule; there is currently only a 15% chance that a randomly selected room will have a fridge in it, independently of all other rooms. A contractor goes from room to room, examining which rooms have fridges and which do not, however they are a bit forgetful and could visit the same room twice. For this problem, there is no need to simplify your answers.
(a) What is the probability that the contractor observes exactly 4 rooms with fridges among the first 10 rooms they examine?
(b) What is the probability that the $13^{\text {th }}$ room the contractor examines is the fourth room with a fridge they observe?
(c) What is the expected number of rooms the contractor must visit before observing their third room with a fridge?
(d) Now, suppose that there are 200 rooms at GauchoStay and 30 of them have fridges. Additionally, suppose that the contractor now takes care to not examine the same room twice. What is the probability that the contractor observes exactly 5 rooms with fridges in a sample of 12 rooms they examine?
9. In a drawer, you have 2 red socks, 2 white socks, and 2 green socks. You randomly draw a sample of 4 socks, without replacement; let X denote the number of matching pairs in your sample (by matching, we mean in color).
(a) What is the state space S_{X} of X ?
(b) Find the probability mass function of X.
[4pts.]
(c) Compute $\mathbb{E}[X]$.
[1 (bonus)]

Page 10

You may use this page for scratch work, if necessary.

You may use this page for scratch work, if necessary.

