1. (1 point) Multiple Choice. Which of the following is the correct method needed to evaluate

$$
\int \frac{1}{\sqrt{2-x^{2}}} \mathrm{~d} x
$$$u$-substitutionintegration by parts

$\sqrt{ }$ inverse trigonometric substitutionpartial fraction decompositionNone of the above.
2. (1 point) Multiple Choice. Which of the following is true about the sum

$$
\sum_{k=1}^{\infty} \frac{5 \cdot 6^{k}}{7^{k}}
$$

$\sqrt{ }$ It is convergent
\bigcirc It diverges to ∞
O It diverges to $-\infty$
None of the above.

3. Short Answer.

(a) (4 points) Evaluate $\int \frac{x}{x^{2}+2 x+1} \mathrm{~d} x$. Show all of your steps and workings!

Solution: We integrate using a u-substitution. Let $u=x^{2}+2 x+1$ so that $\mathrm{d} u=$ $2 x+2 \mathrm{~d} x$. Then the integral can be written

$$
\begin{aligned}
\int \frac{x}{x^{2}+2 x+1} \mathrm{~d} x & =\int \frac{x+1}{x^{2}+2 x+1} \mathrm{~d} x-\int \frac{1}{x^{2}+2 x+1} \mathrm{~d} x \\
& =\int \frac{\frac{1}{2} \mathrm{~d} u}{u}-\int \frac{1}{(x+1)^{2}} \mathrm{~d} x=\frac{1}{2} \ln |u|+\frac{1}{u}+C \\
& =\frac{1}{2} \ln \left|x^{2}+2 x+1\right|+\frac{1}{x+1}+C=\ln |x+1|+\frac{1}{x+1}+C
\end{aligned}
$$

(b) (4 points) Evaluate $\sum_{k=1}^{\infty} \frac{[\ln (\pi)]^{k}}{k!}$ Show all of your steps and workings!

Solution: Recall the MacLaurin Series Expansion of e^{x} :

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

Therefore,

$$
\sum_{k=0}^{\infty} \frac{[\ln (\pi)]^{k}}{k!}=e^{\ln (\pi)}=\pi
$$

and so

$$
\sum_{k=1}^{\infty} \frac{[\ln (\pi)]^{k}}{k!}=\sum_{k=0}^{\infty} \frac{[\ln (\pi)]^{k}}{k!}-\frac{[\ln (\pi)]^{0}}{0!}=\pi-1
$$

