1. (1 point) Multiple Choice Cars arrive at a tollbooth according to a Poisson Process at a rate of 3 cars every minute. Which of the following statements is true?

The probability that we must wait exactly 3 minutes between the $4^{\text {th }}$ and $6^{\text {th }}$ arrivals is $\frac{3^{2}}{\Gamma(2)} \cdot 3^{2-1} \cdot e^{-3 \cdot 3}$
On average, we expect 4 cars to arrive every 2 minutes
\bigcirc On average, we expect to wait 4 minutes between the arrival of the $3^{\text {rd }}$ car and the $5^{\text {th }}$ car.
$\sqrt{ }$ None of the above are correct.
2. Let $X \sim \mathcal{N}(3,5)$. Compute each of the following, leaving your answers in terms of $\boldsymbol{\Phi}$ wherever necessary
(a) (2 points) $\mathbb{P}(X<4)$

Solution: We standardize, and then plug into Φ :

$$
\mathbb{P}(X<4)=1-\mathbb{P}\left(\frac{X-3}{\sqrt{5}}<\frac{4-3}{\sqrt{5}}\right)=\Phi\left(\frac{1}{\sqrt{5}}\right)
$$

(b) (2 points) $\mathbb{E}\left[X^{2}\right]$

Solution:

$$
\mathbb{E}\left[X^{2}\right]=\operatorname{Var}(X)+[\mathbb{E}(X)]^{2}=5+\left(3^{2}\right)=14
$$

- +1 pt for recognizing $\mathbb{E}\left[X^{2}\right]=\operatorname{Var}(X)+[\mathbb{E}(X)]^{2}$
- +1pt for correct final answer [consistent with part (a); that is, if students used $\mathrm{SD}(X)=5$ in part (a) and also in part (b), do not double-deduct on part (b)]

3. (5 points) Let X be a random variable with the following probability density function (p.d.f.):

$$
f_{X}(x)= \begin{cases}|x| & \text { if } x \in[-1,1] \\ 0 & \text { otherwise }\end{cases}
$$

Also, define the random variable Y as $Y:=X^{2}$. Find $f_{Y}(y)$, the p.d.f. of Y.

Solution: Note that $S_{Y}=[0,1]$.
Method 1: The C.D.F. Method For $y \in[0,1]$, we have

$$
\begin{aligned}
F_{Y}(y) & =\mathbb{P}(Y \leq y)=\mathbb{P}\left(X^{2} \leq y\right)=\mathbb{P}(|X| \leq \sqrt{y})=\mathbb{P}(-\sqrt{y} \leq X \leq \sqrt{y}) \\
& =\int_{-\sqrt{y}}^{\sqrt{y}}|x| \mathrm{d} x=2 \int_{0}^{\sqrt{y}} x \mathrm{~d} x=2 \cdot \frac{1}{2}(\sqrt{y})^{2}=y
\end{aligned}
$$

We could at this point differentiate $F_{Y}(y)$ w.r.t. y to find $f_{Y}(y)$ directly, or we could recognize this as the c.d.f. of the $\operatorname{Unif}[0,1]$ distribution; in either case, we find

$$
f_{Y}(y)= \begin{cases}1 & \text { if } y \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Method 2: The Change of Variable Formula We could use the change of variable formula as well, but we would need to split the state space into two subregions:

- $\underline{S_{X}^{(1)}=[-1,0]}$: For $x \in[-1,0]$ we have $g(x)=x^{2}$ and $g^{-1}(y)=-\sqrt{y}$, meaning

$$
\left|\frac{\mathrm{d}}{\mathrm{~d} y} g^{-1}(y)\right|=\left|-\frac{1}{2 \sqrt{y}}\right|=\frac{1}{2 \sqrt{y}}
$$

and so we have

$$
f_{X}^{(1)}(y)=\frac{1}{2 \sqrt{y}} \cdot|-\sqrt{y}| \cdot \mathbb{1}_{\{y \in[0,1]\}}=\frac{y}{2} \cdot \mathbb{1}_{\{y \in[0,1]\}}
$$

(where we have noted that the region $S_{X}^{(1)}$ gets mapped to $[0,1]$ under g.)

- $\underline{S_{X}^{(2)}}=[-1,0]$: For $x \in[0,1]$ we have $g(x)=x^{2}$ and $g^{-1}(y)=\sqrt{y}$, meaning

$$
\left|\frac{\mathrm{d}}{\mathrm{~d} y} g^{-1}(y)\right|=\left|\frac{1}{2 \sqrt{y}}\right|=\frac{1}{2 \sqrt{y}}
$$

and so we have

$$
f_{X}^{(2)}(y)=\frac{1}{2 \sqrt{y}} \cdot|\sqrt{y}| \cdot \mathbb{1}_{\{y \in[0,1]\}}=\frac{y}{2} \cdot \mathbb{1}_{\{y \in[0,1]\}}
$$

(where we have noted that the region $S_{X}^{(2)}$ also gets mapped to $[0,1]$ under g.)

Therefore, putting everything together: for $y \in[0,1]$ we have

$$
f_{Y}(y)=f_{Y}^{(1)}(y)+f_{Y}^{(2)}(y)=\frac{y}{2} \cdot \mathbb{1}_{\{y \in[0,1]\}}+\frac{y}{2} \cdot \mathbb{1}_{\{y \in[0,1]\}}=y \cdot \mathbb{1}_{\{y \in[0,1]\}}
$$

or, equivalently,

$$
f_{Y}(y)= \begin{cases}1 & \text { if } y \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

