- 1. (1 point) **Multiple Choice** Cars arrive at a tollbooth according to a Poisson Process at a rate of 3 cars every minute. Which of the following statements is true?
 - \bigcirc The probability that we must wait exactly 3 minutes between the 4th and 6th arrivals is $\frac{3^2}{\Gamma(2)} \cdot 3^{2-1} \cdot e^{-3\cdot 3}$
 - On average, we expect 4 cars to arrive every 2 minutes
 - \bigcirc On average, we expect to wait 4 minutes between the arrival of the 3rd car and the 5th car.
 - $\sqrt{}$ None of the above are correct.
- 2. Let $X \sim \mathcal{N}(3,5)$. Compute each of the following, leaving your answers in terms of Φ wherever necessary
 - (a) (2 points) $\mathbb{P}(X < 4)$

Solution: We standardize, and then plug into Φ :

$$\mathbb{P}(X < 4) = 1 - \mathbb{P}\left(\frac{X - 3}{\sqrt{5}} < \frac{4 - 3}{\sqrt{5}}\right) = \Phi\left(\frac{1}{\sqrt{5}}\right)$$

(b) (2 points) $\mathbb{E}[X^2]$

Solution:

$$\mathbb{E}[X^2] = \operatorname{Var}(X) + [\mathbb{E}(X)]^2 = 5 + (3^2) = 14$$

- +1pt for recognizing $\mathbb{E}[X^2] = \operatorname{Var}(X) + [\mathbb{E}(X)]^2$
- +1pt for correct final answer [consistent with part (a); that is, if students used SD(X) = 5 in part (a) and also in part (b), do not double-deduct on part (b)]
- 3. (5 points) Let X be a random variable with the following probability density function (p.d.f.):

$$f_X(x) = \begin{cases} |x| & \text{if } x \in [-1,1] \\ 0 & \text{otherwise} \end{cases}$$

Also, define the random variable *Y* as $Y := X^2$. Find $f_Y(y)$, the p.d.f. of *Y*.

Solution: Note that $S_Y = [0, 1]$.

Method 1: The C.D.F. Method For $y \in [0, 1]$, we have

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(X^2 \le y) = \mathbb{P}(|X| \le \sqrt{y}) = \mathbb{P}(-\sqrt{y} \le X \le \sqrt{y})$$
$$= \int_{-\sqrt{y}}^{\sqrt{y}} |x| \, \mathrm{d}x = 2 \int_0^{\sqrt{y}} x \, \mathrm{d}x = 2 \cdot \frac{1}{2} (\sqrt{y})^2 = y$$

We could at this point differentiate $F_Y(y)$ w.r.t. y to find $f_Y(y)$ directly, or we could recognize this as the c.d.f. of the Unif[0, 1] distribution; in either case, we find

$$f_Y(y) = \begin{cases} 1 & \text{if } y \in [0,1] \\ 0 & \text{otherwise} \end{cases}$$

Method 2: The Change of Variable Formula We could use the change of variable formula as well, but we would need to split the state space into two subregions:

•
$$\underline{S}_X^{(1)} = [-1,0]$$
: For $x \in [-1,0]$ we have $g(x) = x^2$ and $g^{-1}(y) = -\sqrt{y}$, meaning
 $\left| \frac{\mathrm{d}}{\mathrm{d}y} g^{-1}(y) \right| = \left| -\frac{1}{2\sqrt{y}} \right| = \frac{1}{2\sqrt{y}}$

and so we have

$$f_X^{(1)}(y) = \frac{1}{2\sqrt{y}} \cdot |-\sqrt{y}| \cdot \mathbb{1}_{\{y \in [0,1]\}} = \frac{y}{2} \cdot \mathbb{1}_{\{y \in [0,1]\}}$$

(where we have noted that the region $S_X^{(1)}$ gets mapped to [0, 1] under *g*.)

•
$$\underline{S_X^{(2)}} = [-1,0]$$
: For $x \in [0,1]$ we have $g(x) = x^2$ and $g^{-1}(y) = \sqrt{y}$, meaning
 $\left|\frac{\mathrm{d}}{\mathrm{d}y}g^{-1}(y)\right| = \left|\frac{1}{2\sqrt{y}}\right| = \frac{1}{2\sqrt{y}}$

and so we have

$$f_X^{(2)}(y) = \frac{1}{2\sqrt{y}} \cdot |\sqrt{y}| \cdot \mathbb{1}_{\{y \in [0,1]\}} = \frac{y}{2} \cdot \mathbb{1}_{\{y \in [0,1]\}}$$

(where we have noted that the region $S_X^{(2)}$ also gets mapped to [0, 1] under g.)

Therefore, putting everything together: for $y \in [0, 1]$ we have

$$f_Y(y) = f_Y^{(1)}(y) + f_Y^{(2)}(y) = \frac{y}{2} \cdot \mathbb{1}_{\{y \in [0,1]\}} + \frac{y}{2} \cdot \mathbb{1}_{\{y \in [0,1]\}} = \frac{y \cdot \mathbb{1}_{\{y \in [0,1]\}}}{y \cdot \mathbb{1}_{\{y \in [0,1]\}}}$$

or, equivalently,

$$f_Y(y) = \begin{cases} 1 & \text{if } y \in [0,1] \\ 0 & \text{otherwise} \end{cases}$$