1. (1 point) Multiple Choice: I hope you've been paying attention this quarter... Where have our lectures been held?
$\sqrt{ }$ PSYCH 1902
\bigcirc BROIDA 1610
O SOUTH HALL 1430
O SOUTH HALL 5421
None of the other answer choices
2. Let $X, Y \stackrel{\text { i.i.d. }}{\sim} \operatorname{Unif}[0,1]$
(a) (1 point) What is $f_{X, Y}(x, y)$, the joint probability density function (p.d.f.) of (X, Y) ? Justify your answer.

Solution: By independence, $f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)$. We also know that $f_{X}(x)=$ $\mathbb{1}_{\{0 \leq x \leq 1\}}$ and $f_{Y}(y)=\mathbb{1}_{\{0 \leq y \leq 1\}}$; therefore,

$$
f_{X, Y}(x, y)=\mathbb{1}_{\{0 \leq x \leq 1,0 \leq y \leq 1\}}= \begin{cases}1 & \text { if } x \in[0,1], y \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

(b) (2 points) If $z \in[0,1]$, compute $\mathbb{P}(X+Y \leq z)$. USE INTEGRALS; don't just use geometry. Additionally, Evaluate all integrals fully, and sketch the region of integration for full credit.

Solution: If $z \in[0,1]$, our picture looks like:

Either order of integration is fine; using $\mathrm{d} x \mathrm{~d} y$, we find

$$
\begin{aligned}
\mathbb{P}(X+Y \leq z) & =\int_{0}^{z} \int_{0}^{z-y}(1) \mathrm{d} x \mathrm{~d} y \\
& =\int_{0}^{z}(z-y) \mathrm{d} y=\left[z y-\frac{1}{2} y^{2}\right]_{y=0}^{y=z}=z^{2}-\frac{1}{2} z^{2}=\frac{1}{2} z^{2}
\end{aligned}
$$

(It would have been acceptable to also compute the area of the shaded triangle using geometry, without the need for any integrals.)
(c) (2 points) If $z \in[1,2]$, compute $\mathbb{P}(X+Y \leq z)$. For this part, set up BUT DO NOT EVALUATE the integral. For full points, you must still sketch the region of integration.

Solution: If $z \in[1,2]$, our picture looks like:

The points of intersection between the line and the boundaries $x=1, y=1$ are $(1, z-1)$ and $(z-1,1)$. Again, either order of integration is fine; using $\mathrm{d} x \mathrm{~d} y$, we find

$$
\mathbb{P}(X+Y \leq z)=\int_{0}^{z-1} \int_{0}^{1}(1) \mathrm{d} x \mathrm{~d} y+\int_{z-1}^{1} \int_{0}^{z-y}(1) \mathrm{d} x \mathrm{~d} y
$$

3. Suppose X is a random variable with MGF (Moment-Generating Function) given by

$$
M_{X}(t)= \begin{cases}\frac{e^{t}}{1-2 t} & \text { if } t<\frac{1}{2} \\ \infty & \text { otherwise }\end{cases}
$$

(a) (2 points) Compute $\mathbb{E}[X]$. Show all of your work for full credit!

Solution: There are two ways to solve this problem. The way I anticipate most people will use to solve this is using the fact that

$$
\mathbb{E}[X]=M_{X}^{\prime}(0)
$$

Thus, we first differentiate $M_{X}(t)$, and then evaluate at $t=0$:

$$
\begin{aligned}
M_{X}^{\prime}(t) & =\frac{e^{t}(1-2 t)+2 e^{t}}{(1-2 t)^{2}} \\
\mathbb{E}[X] & =M_{X}^{\prime}(0)=\frac{e^{0}(1-2 \cdot 0)+2 e^{0}}{(1-2 \cdot 0)^{2}}=\frac{1+2}{1}=3
\end{aligned}
$$

The other, slightly more esoteric way to solve this problem, is to let $Y \sim \operatorname{Exp}(1)$ so that

$$
M_{Y}(t)= \begin{cases}\frac{1}{1-t} & \text { if } t<1 \\ \infty & \text { otherwise }\end{cases}
$$

Also, recall that $M_{a Y+b}(t)=e^{b t} M_{Y}(a t)$. Thus, note that if $X=2 Y+1$, we have

$$
M_{2 Y+1}(t)=e^{t} \cdot\left\{\begin{array}{ll}
\frac{1}{1-2 t} & \text { if } 2 t<1 \\
\infty & \text { otherwise }
\end{array}= \begin{cases}\frac{e^{t}}{1-2 t} & \text { if } t<\frac{1}{2} \\
\infty & \text { otherwise }\end{cases}\right.
$$

which is indeed the MGF of X. Hence, $X=2 Y+1$ and, since $\mathbb{E}[Y]=1$,

$$
\mathbb{E}[X]=\mathbb{E}[2 Y+1]=2 \mathbb{E}[Y]+1=2(1)=1=3
$$

(b) (2 points) Suppose we have another random variable $Y \sim \mathcal{N}(3,2)$ that is independent of X. If we define $Z:=X+Y$, find $M_{Z}(t)$, the MGF of Z. Be sure to specify the values of t over which $M_{Z}(t)$ is infinite!

Solution: Since $X \perp Y$, we know that $M_{Z}(t)=M_{X}(t) M_{Y}(t)$. We were provided $M_{X}(t)$; we can also lookup/recall that $M_{Y}(t)=\exp \left\{2 t+t^{2}\right\}$. Additionally, $M_{X}(t)<$ ∞ only when $t<1 / 2$; thus, fix a $t<1 / 2$ so that

$$
M_{Z}(t)=M_{X}(t) M_{Y}(t)=\frac{e^{t}}{1-2 t} \cdot e^{2 t} \cdot e^{t^{2}}=\frac{e^{3 t+t^{2}}}{1-2 t}
$$

and hence the full MGF of Z is

$$
M_{Z}(t)= \begin{cases}\frac{e^{3 t+t^{2}}}{1-2 t} & \text { if } t<1 / 2 \\ \infty & \text { otherwise }\end{cases}
$$

