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PSTAT 120A, Summer 2022: Practice Problems 5
Week 4

Conceptual Review

(a) Why is a function of a random variable also a random variable?
(b) If 𝑌 := 𝑔(𝑋) where the distribution of 𝑋 is known, must we first find 𝑓𝑌 (𝑦)

before computing E[𝑌 ]?
(c) How do transformations of discrete random variables work?
(d) Will transformations of discrete random variables always be discrete? Will

transformations of continuous random variables always be continuous?

Problem 1: Two Interesting Results

(a) If 𝑋 ∼ Exp(_) and 𝑌 := 𝑐𝑋 for some fixed constant 𝑐 > 0, show that
𝑌 ∼ Exp(_/𝑐). For practice, derive the result in two ways: using the c.d.f.
method, and using the Change of Variable formula.

Solution: Using the CDF Method:

𝐹𝑌 (𝑦) := P(𝑌 ≤ 𝑦) = P(𝑐𝑋 ≤ 𝑦) = P
(
𝑋 ≤ 𝑦

𝑐

)
= 𝐹𝑋

( 𝑦
𝑐

)
=

{
1 − 𝑒−_(

𝑦

𝑐 ) if
( 𝑦
𝑐

)
≥ 0

0 otherwise
=

{
1 − 𝑒−( _

𝑐 )𝑦 if 𝑦 ≥ 0
0 otherwise

which we recognize as the c.d.f. of a Exp(_/𝑐) distribution.

Using the Change of Variable Formula: We take 𝑔(𝑡) = 𝑐𝑡 meaning 𝑔−1(𝑡) = (𝑡/𝑐), and so���� d
d𝑦

𝑔−1(𝑦)
���� = ���� d

d𝑦

( 𝑦
𝑐

)���� = ����1𝑐 ���� = 1
𝑐

where we were able to drop the absolute value signs since 𝑐 > 0 by assumption. Hence, by the
Change of Variable formula, the nonzero portion of 𝑓𝑌 (𝑦) is given by

𝑓𝑌 (𝑦) = 𝑓𝑋
[
𝑔−1(𝑦)

]
·
���� d
d𝑦

𝑔−1(𝑦)
���� = _𝑒−_(

𝑦

𝑐 ) · 1
𝑐
=

(
_

𝑐

)
𝑒−( _

𝑐 )𝑦

Coupled with the fact that 𝑆𝑌 = [0,∞) we have

𝑓𝑌 (𝑦) =
{(

_
𝑐

)
𝑒−( _

𝑐 )𝑦 if 𝑦 ≥ 0
0 otherwise

which shows 𝑌 ∼ Exp(_/𝑐).



Page 2 of 9 PSTAT 120A: Summer 2022 with Ethan Marzban

(b) If 𝑋 ∼ Gamma(𝑟, _) and 𝑌 := 𝑐𝑋 for some fixed constant 𝑐 > 0, identify the
distribution of𝑌 by name, taking care to include any/all relevant parameter(s).

Solution: Using the CDF Method:

𝐹𝑌 (𝑦) := P(𝑌 ≤ 𝑦) = P(𝑐𝑋 ≤ 𝑦) = P
(
𝑋 ≤ 𝑦

𝑐

)
= 𝐹𝑋

( 𝑦
𝑐

)
It will actually be inadvisable to try and simplify this integral any further, as the Gamma distribution
does not (in general) have a simple closed-form expression for its C.D.F.. Instead, we can obtain
the p.d.f. of 𝑌 directly by differentiating our expression above and utilizing the Chain Rule:

𝑓𝑌 (𝑦) =
d
d𝑦

𝐹𝑌 (𝑦)

=
d
d𝑦

𝐹𝑋

( 𝑦
𝑐

)
=

1
𝑐
· 𝑓𝑌

( 𝑦
𝑐

)
=

1
𝑐
· _𝑟

Γ(𝑟)

( 𝑦
𝑐

)𝑟−1
· 𝑒−_(

𝑦

𝑐 )

=

(
_
𝑐

)𝑟
Γ(𝑟) 𝑦

𝑟−1𝑒−( _
𝑐 )𝑦

which shows 𝑌 ∼ Gamma(𝑟, _/𝑐) . The Change of Variable formula would have functioned in
much the same way for this problem.

Problem 2: Raise The Roof- er, Ceiling!

Hint: Identify appropriate
values for 𝑎 and 𝑏 such that

{⌈𝑋⌉ = 𝑦} = {𝑎 < 𝑋 ≤ 𝑏}

Let 𝑋 ∼ Exp(_), and define 𝑌 := ⌈𝑋⌉. Identify the distribution of 𝑌 by name,
taking care to include any/all relevant parameter(s). Recall that

⌈𝑥⌉ := smallest integer larger than or equal to 𝑥

so, for instance, ⌈𝜋⌉ = 4.

Solution: First note that the support of 𝑌 is {1, 2, 3, . . . }, meaning 𝑌 is discrete. Now, following the
hint, we relate the p.m.f. of 𝑌 to the c.d.f. of 𝑋 by writing

𝑝𝑌 (𝑦) := P(𝑌 = 𝑦) = P(⌈𝑋⌉ = 𝑦)

Upon inspection, we note that
{⌈𝑋⌉ = 𝑦} = {𝑦 − 1 < 𝑋 ≤ 𝑦}

Thus, we have

𝑝𝑌 (𝑦) = P(⌈𝑋⌉ = 𝑦)
= P(𝑦 − 1 < 𝑋 ≤ 𝑦)
= 𝐹𝑋 (𝑦) − 𝐹𝑋 (𝑦 − 1)
= �1 − 𝑒−_𝑦 − �1 + 𝑒−_(𝑦−1)

= 𝑒−_(𝑦−1) − 𝑒−_𝑦
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= 𝑒−_𝑦 · 𝑒_ − 𝑒−_𝑦

= 𝑒−_𝑦 (𝑒_ − 1)
= 𝑒−_𝑦𝑒−_(1 − 𝑒−_)

=

(
𝑒−_

) (𝑦−1)
(1 − 𝑒−_)

=
[
1 − (1 − 𝑒−_)

] 𝑦−1 ·
(
1 − 𝑒−_

)
showing that

𝑌 ∼ Geom(1 − 𝑒−_) on {1, 2, 3, . . . }

As an aside: The factorization for this problem may not come very naturally to most. That is, it may be
tempting to write

P(𝑌 = 𝑦) = 𝑒−_𝑦 (𝑒_ − 1)

If you have an intuition that this might follow the Geometric distribution, but don’t quite know what
parameter it should follow, you can “cheat” by finding the expectation of 𝑌 directly:

E(𝑌 ) =
∞∑︁
𝑦=1

𝑦 · 𝑒−_𝑦 (𝑒_ − 1)

= (𝑒_ − 1) ·
∞∑︁
𝑦=1

𝑦

(
𝑒−_

) 𝑦
= (𝑒−_ − 1) · 𝑒−_

(1 − 𝑒−_)2

= �����(1 − 𝑒−_) · 1(
1 − 𝑒−_

)
��2
=

1
1 − 𝑒−_

Therefore, since the expectation of a Geometric distribution on {1, 2, . . . , } is simply 1 divided by the
parameter 𝑝, this seems to indicate that 𝑝 = 1 − 𝑒−_. One can use this fact to guide the factorization of
P(𝑌 = 𝑦) into the more standard form of the p.m.f. of a Geometric distribution on {1, 2, . . . }.
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Extra Problems
Problem 3: Rounding

The true concentration of radiation in a particular room (measured in counts per
second) is uniformly distributed on the interval [0, 10]. A Geiger counter is used
to measure the radiation in this room, however it is very crude and only displays
measurements rounded to the nearest integer value. Let 𝑋 denote the true amount
of radiation in the room, and 𝑌 denote the amount of radiation displayed on the
Geiger counter.

(a) Is 𝑋 discrete or continuous? What about 𝑌?
(b) Is it correct to say that 𝑌 is uniformly distributed on 𝑆𝑌 , the state space of 𝑌?
(c) Now, find the p.m.f. of 𝑌 .

Solution:
(a) 𝑋 is continuous, whereas 𝑌 is discrete. Specifically, 𝑆𝑋 = [0, 10] whereas 𝑌 = {0, 1, 2, · · · , 10}.

(b) No, it is not correct: there are more points in 𝑆𝑋 that get mapped to 1 than 0.

(c) We try to relate the p.m.f. of 𝑌 to the c.d.f. of 𝑋:

𝑝𝑌 (𝑦) := P(𝑌 = 𝑦) = P(round(𝑋) = 𝑦) = P(𝑦 − 0.5 ≤ 𝑋 < 𝑦 + 0.5)

That is,

𝑝𝑌 (𝑌 ) = 𝐹𝑋 (𝑦 + 0.5) − 𝐹𝑋 (𝑦 − 0.5)

Now, recall the c.d.f. of 𝑋 takes the form

𝐹𝑋 (𝑥) =


0 if 𝑥 ≤ 0
𝑥
10 if 0 ≤ 𝑥 ≤ 10
1 if 𝑥 ≥ 10

Therefore:

𝑝𝑌 (𝑌 ) = 𝐹𝑋 (𝑦 + 0.5) − 𝐹𝑋 (𝑦 − 0.5)

=


0 if 𝑦 + 0.5 ≤ 0
𝑦+0.5

10 if 0 ≤ 𝑦 + 0.5 ≤ 10
1 if 𝑦 + 0.5 ≥ 10

−


0 if 𝑦 − 0.5 ≤ 0
𝑦−0.5

10 if 0 ≤ 𝑦 − 0.5 ≤ 10
1 if 𝑦 − 0.5 ≥ 10

=


0 if 𝑦 ≤ −0.5
𝑦+0.5

10 if − 0.5 ≤ 𝑦 ≤ 9.5
1 if 𝑦 ≥ 9.5

−


0 if 𝑦 ≤ 0.5
𝑦−0.5

10 if 0.5 ≤ 𝑦 ≤ 10.5
1 if 𝑦 ≥ 10.5

=



0 if 𝑦 ≤ −0.5
𝑦+0.5

10 if − 0.5 ≤ 𝑦 ≤ 0.5
𝑦+0.5

10 if 0.5 ≤ 𝑦 ≤ 9.5
1 if 9.5 ≤ 𝑦 ≤ 10.5
1 if 𝑦 ≥ 10.5

−



0 if 𝑦 ≤ −0.5
0 if − 0.5 ≤ 𝑦 ≤ 0.5
𝑦−0.5

10 if 0.5 ≤ 𝑦 ≤ 9.5
𝑦−0.5

10 if 9.5 ≤ 𝑦 ≤ 10.5
1 if 𝑦 ≥ 10.5
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=



0 − 0 if 𝑦 ≤ −0.5
𝑦+0.5

10 − 0 if − 0.5 ≤ 𝑦 ≤ 0.5
𝑦+0.5

10 − 𝑦−0.5
10 if 0.5 ≤ 𝑦 ≤ 9.5

1 − 𝑦−0.5
10 if 9.5 ≤ 𝑦 ≤ 10.5

1 − 1 if 𝑦 ≥ 10.5

=



0 if 𝑦 ≤ −0.5
𝑦+0.5

10 if − 0.5 ≤ 𝑦 ≤ 0.5
1
10 if 0.5 ≤ 𝑦 ≤ 9.5
10.5−𝑦

10 if 9.5 ≤ 𝑦 ≤ 10.5
0 if 𝑦 ≥ 10.5

First, we combine the 𝑦 ≤ −0.5 and 𝑦 ≥ 10.5 into a single “otherwise” category:

𝑝𝑌 (𝑦) =


𝑦+0.5

10 if − 0.5 ≤ 𝑦 ≤ 0.5
1
10 if 0.5 ≤ 𝑦 ≤ 9.5
10.5−𝑦

10 if 9.5 ≤ 𝑦 ≤ 10.5
0 otherwise

Now, we note the support of 𝑌 . Notice that the only value between −0.5 and 0.5 that 𝑌 can attain
is the value 0. Similarly, the only values between 0.5 and 9.5 that 𝑌 can attain are 1, 2, . . . 9, and
the only value between 9.5 and 10.5 that 𝑌 can attain is the value 10. Thus, we can convert our
expression above into:

𝑝𝑌 (𝑦) =


𝑦+0.5

10 if 𝑦 = 0
1
10 if 𝑦 ∈ {1, 2, . . . , 9}
10.5−𝑦

10 if 𝑦 = 10
0 otherwise

which simplifies to

𝑝𝑌 (𝑦) =


0.5/10 if 𝑦 = 0
1/10 if 𝑦 ∈ {1, 2, . . . , 9}
0.5/10 if 𝑦 = 10
0 otherwise

As a sanity check, note that the p.m.f. values do indeed sum to unity.

Problem 4: Transformations (CB, 2.1)

In each of the following find the p.d.f. of Y. Show that the p.d.f. integrates to 1.

Solution: Note: Each part can be solved using either the CDF method or by utilizing the Change of
Variable formula. Just so everyone gets some practice with the Change of Variable formula, though, I
shall utilize that method in all parts below.
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(a) 𝑌 = 𝑋3 and 𝑓𝑋 (𝑥) = 42𝑥5(1 − 𝑥), 0 < 𝑥 < 1

Solution:

• 𝑔(𝑡) = 𝑡3 is invertible over [0, 1].

• 𝑔−1(𝑦) = 3
√
𝑦 = 𝑦

1/3

•
���� d
d𝑦

𝑔−1(𝑦)
���� = ���� 1

3𝑦2/3

���� = 1
3𝑦2/3

• 𝑓𝑋 [𝑔−1(𝑦)] = 𝑓𝑋 (𝑦
1/3) =

{
42

(
𝑦

1/3
)5 (1 − 𝑦

1/3
)

if 0 < 𝑦
1/3 < 1

0 otherwise

=

{
42𝑦5/3

(
1 − 𝑦

1/3
)

if 0 < 𝑦 < 1
0 otherwise

= 42𝑦5/3(1 − 𝑦
1/3) · 1{𝑦∈(0,1) }

Thus, putting everything together,

𝑓𝑌 (𝑦) = 42𝑦5/3(1 − 𝑦
1/3) · 1{𝑦∈(0,1) } ·

1
3𝑦2/3

= 14𝑦(1 − 𝑦
1/3) · 1{𝑦∈(0,1) }

= 14
(
𝑦 − 𝑦

4/3
)
· 1{𝑦∈(0,1) }

As a check: ∫ ∞

−∞
𝑓𝑌 (𝑦) d𝑦 =

∫ 1

0
14

(
𝑦 − 𝑦

4/3
)

d𝑦

= 14
(
1
2
− 3

7

)
= 14 · 1

14
= 1 ✓

(b) 𝑌 = 4𝑋 + 3 and 𝑓𝑋 (𝑥) = 7𝑒−7𝑥 , 0 < 𝑥 < ∞

Solution:

• 𝑔(𝑡) = 4𝑡 + 3 is invertible over (0,∞).

• 𝑔−1(𝑦) = 𝑦−3
4

•
���� d
d𝑦

𝑔−1(𝑦)
���� = ���� 𝑦 − 3

4

���� = 1
4

• 𝑓𝑋 [𝑔−1(𝑦)] = 𝑓𝑋

(
𝑦 − 3

4

)
=

{
7 exp

{
−7

(
𝑦−3

4

)}
if 0 <

𝑦−3
4 < ∞

0 otherwise

=

{
7 exp

{
−7

(
𝑦−3

4

)}
if 𝑦 > 3

0 otherwise

= 7𝑒−
7
4 (𝑦−3) · 1{𝑦>3}



Page 7 of 9 PSTAT 120A: Summer 2022 with Ethan Marzban

Thus, putting everything together,

𝑓𝑌 (𝑦) = 7𝑒−
7
4 (𝑦−3) · 1{𝑦>3} ·

1
4
=

7
4
𝑒−

7
4 (𝑦−3) · 1{𝑦>3}

As a check: ∫ ∞

−∞
𝑓𝑌 (𝑦) d𝑦 =

∫ ∞

3

7
4
𝑒−

7
4 (𝑦−3) d𝑦

Make a 𝑢−substitution: 𝑢 = (7/4) (𝑦 − 3) so that d𝑢 = (7/4) d𝑢 and∫ ∞

−∞
𝑓𝑌 (𝑦) d𝑦 =

∫ ∞

3

7
4
𝑒−

7
4 (𝑦−3) d𝑦

=

∫ ∞

0
𝑒−𝑢 d𝑢 = −𝑒−𝑢

]𝑢=∞
𝑢=0

= 0 − (−1) = 1 ✓

(c) 𝑌 = 𝑋2 and 𝑓𝑋 (𝑥) = 30𝑥2(1 − 𝑥)2, 0 < 𝑥 < 1

Solution:

• 𝑔(𝑡) = 𝑡2 is invertible over [0, 1].

• 𝑔−1(𝑦) = √
𝑦 = 𝑦

1/2

•
���� d
d𝑦

𝑔−1(𝑦)
���� = ���� 1

2√𝑦

���� = 1
2√𝑦

• 𝑓𝑋 [𝑔−1(𝑦)] = 𝑓𝑋 (
√
𝑦) =

{
30

(√
𝑦
)2 (1 − √

𝑦
)2 if 0 <

√
𝑦 < 1

0 otherwise

=

{
30𝑦

(
1 − √

𝑦
)2 if 0 < 𝑦 < 1

0 otherwise

= 30𝑦
(
1 − √

𝑦
)2 · 1{𝑦∈(0,1) }

Thus, putting everything together,

𝑓𝑌 (𝑦) = 30𝑦
(
1 − √

𝑦
)2 · 1{𝑦∈(0,1) } ·

1
2√𝑦

= 15
√
𝑦
(
1 − √

𝑦
)2 · 1{𝑦∈(0,1) }

As a check: ∫ ∞

−∞
𝑓𝑌 (𝑦) d𝑦 =

∫ 1

0
15
√
𝑦
(
1 − √

𝑦
)2 d𝑦

= 15
∫ 1

0

√
𝑦(1 − 2

√
𝑦 + 𝑦) d𝑦

= 15
∫ 1

0

(
𝑦

1/2 − 2𝑦 + 𝑦
3/2
)

d𝑦
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= 15 ·
(
2
3
− 1 + 2

5

)
= 15 · 1

15
= 1 ✓

Problem 5: Square-y Situation

Suppose 𝑋 ∼ Unif [−1, 2] and 𝑌 := 𝑋2.

(a) Compute E[𝑌 ]. Hint: If you remember certain properties about the uniform
distribution, you can do this without computing any integrals.

Solution: E[𝑌 ] = E[𝑋2] = Var(𝑋) + [E(𝑋)]2. Since 𝑋 ∼ Unif [−1, 2] we know that

E(𝑋) = 1
2

; Var(𝑋) = [2 − (−1)]2

12
=

9
12

=
3
4

and so

E[𝑌 ] = 3
4
+
(
1
2

)2
=

5
4

(b) Find 𝑓𝑌 (𝑦), the probability density function (p.d.f.) of 𝑌 .

Solution: Let’s take a look at what 𝑔(𝑥) = 𝑥2 looks like over the state space of 𝑋:

𝒙

𝒚

−1 2

1

4

From the 𝑦−axis of this graph, we can see that 𝑆𝑌 = [0, 4]. Additionally, we see that 𝑔(𝑥) = 𝑥2 fails
to be invertible over the entire state space of 𝑋 , meaning we must partition 𝑆𝑋. A natural partition
is 𝑆 (1)

𝑋
= [−1, 0] and 𝑆

(2)
𝑋

= [0, 2].

• 𝑆
(1)
𝑋

: We see firstly that 𝑆 (1)
𝑋

↦→ [0, 1]. Therefore, we fix a 𝑦 ∈ [0, 1] and compute the

portion of the density of 𝑌 that results: over 𝑆 (1)
𝑋

we have 𝑔−1(𝑦) = −√𝑦 meaning���� d
d𝑦

𝑔−1(𝑦)
���� = 1

2√𝑦
We also know that since 𝑋 ∼ Unif [−1, 2], we have 𝑓𝑋 (𝑥) = 1/3 · 1{𝑥∈[−1,2] } and so, by the
change of variable formula, we find

𝑓
(1)
𝑌

(𝑦) = 1
3
· 1

2√𝑦 · 1{𝑦∈[0,1] } =
1

6√𝑦 · 1{𝑦∈[0,1] }
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• 𝑆
(2)
𝑋

: We see firstly that 𝑆 (2)
𝑋

↦→ [0, 4]. Therefore, we fix a 𝑦 ∈ [0, 4] and compute the

portion of the density of 𝑌 that results: over 𝑆 (2)
𝑋

we have 𝑔−1(𝑦) = +√𝑦 meaning���� d
d𝑦

𝑔−1(𝑦)
���� = 1

2√𝑦

We also still have have 𝑓𝑋 (𝑥) = 1/3 · 1{𝑥∈[−1,2] } meaning, by the change of variable formula,
we have

𝑓
(2)
𝑌

(𝑦) = 1
3
· 1

2√𝑦 · 1{𝑦∈[0,4] } =
1

6√𝑦 · 1{𝑦∈[0,4] }

Our final density 𝑓𝑌 (𝑦) will be the sum of these two “sub-densities”:

𝑓𝑌 (𝑦) = 𝑓
(1)
𝑌

(𝑦) + 𝑓
(2)
𝑌

(𝑦) = 1
6√𝑦 · 1{𝑦∈[0,1] } +

1
6√𝑦 · 1{𝑦∈[0,4] }

What we see is that for 𝑦 ∈ [0, 1] both of the indicators above are nonzero, meaning

𝑓𝑌 (𝑦) =
1

6√𝑦 + 1
6√𝑦 =

1
3√𝑦 if 𝑦 ∈ [0, 1]

If instead 𝑦 ∈ [1, 4] the leftmost indicator is zero whereas the rightmost indicator is nonzero,
meaning

𝑓𝑌 (𝑦) =
1

6√𝑦 + 0 =
1

6√𝑦 if 𝑦 ∈ [1, 4]

Finally, if 𝑦 ∉ [0, 4] both indicators are zero. Therefore,

𝑓𝑌 (𝑦) =


1

3√𝑦
if 𝑦 ∈ [0, 1]

1
6√𝑦

if 𝑦 ∈ [1, 4]
0 otherwise

As a quick check:∫ ∞

−∞
𝑓𝑌 (𝑦) d𝑦 =

∫ 1

0

1
3√𝑦 d𝑦 +

∫ 4

1

1
6√𝑦 d𝑦

=
1
3
[
2
√
𝑦
] 𝑦=1
𝑦=0 +

1
6
[
2
√
𝑦
] 𝑦=4
𝑦=1 =

2
3
(1 − 0) + 1

3
(2 − 1) = 2

3
+ 1

3
= 1 ✓


