PSTAT 120A, Summer 2022: Practice Problems 6

Week 4

Conceptual Review

(a) Geometrically, what does a double integral represent?
(b) How is the evaluation of a double integral contingent on the order of integration?
(c) What is a random vector?
(d) What is a joint p.d.f. / joint p.m.f.?

Problem 1: Picking Points
A point is picked uniformly from the region \mathcal{R} which is the area underneath the portion of the graph of $y=1-|x-1|$ lying in the first quadrant. Let X denote the x-coordinate of this point and let Y denote the y-coordinate of this point.
(a) Find $f_{X, Y}(x, y)$, the joint p.d.f. of (X, Y).

Solution: Let's first sketch \mathcal{R} :

We can also see that

$$
\operatorname{area}(\mathcal{R})=2 \cdot \frac{1}{2}(1)(1)=1
$$

meaning our joint density will be

$$
f_{X, Y}(x, y)=\left\{\begin{array}{ll}
\frac{1}{1} & \text { if }(x, y) \in \mathcal{R} \\
0 & \text { otherwise }
\end{array}=\mathbb{1}_{\{(x, y) \in \mathcal{R}\}}\right.
$$

(b) Compute $\mathbb{E}[X Y]$.

Solution: Either order of integration is fine; I shall demonstrate $\mathrm{d} y \mathrm{~d} x$:

$$
\begin{aligned}
\mathbb{E}[X Y] & =\int_{0}^{1} \int_{0}^{x} x y \mathrm{~d} x \mathrm{~d} y+\int_{1}^{2} \int_{0}^{2-x} x y \mathrm{~d} x \mathrm{~d} y \\
& =\int_{0}^{1} x \cdot \frac{1}{2} x^{2} \mathrm{~d} x+\int_{1}^{2} x \cdot \frac{1}{2}(2-x)^{2} \mathrm{~d} x \\
& =\frac{1}{8}+\frac{1}{2} \int_{1}^{2}\left(4 x-4 x^{2}+x^{3}\right) \mathrm{d} x
\end{aligned}
$$

$$
=\frac{1}{8}+\frac{1}{2} \cdot \frac{5}{12}=\frac{1}{3}
$$

(c) Find $f_{X}(x)$ and $f_{Y}(y)$, the marginal densities of X and Y respectively.

Solution: Let's focus on $f_{X}(x)$ first. We will need to split into two cases:

- If $x \in[0,1]$ we have

$$
f_{X}(x)=\int_{0}^{x}(1) \mathrm{d} y=x
$$

- If $x \in[1,2]$, we have

$$
f_{X}(x)=\int_{0}^{2-x}(1) \mathrm{d} y=2-x
$$

Therefore, putting everything together,

$$
f_{X}(x)= \begin{cases}x & \text { if } 0 \leq x \leq 1 \\ 2-x & \text { if } 1 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

For $f_{Y}(y)$ we play a similar game, except we now have only one case to consider: for $y \in[0,1]$ we have

$$
f_{Y}(y)=\int_{y}^{2-y}(1) \mathrm{d} x=2-2 y=2(1-y)
$$

meaning

$$
f_{Y}(y)= \begin{cases}2(1-y) & \text { if } y \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Problem 2: Dice Dice Baby

Suppose Xavier and Yolanda each roll a fair k-sided die (where $k \in \mathbb{N}$). Let X denote the result of Xavier's roll and Y denote the result of Yolanda's roll, and set $Z:=\max \{X, Y\}$.

$$
\begin{array}{ll}
\text { a) Find the p.m.f. of } Z . & \begin{array}{l}
\text { Hint: First find the c.d.f. of } Z \\
\text { and then consider how } F_{Z}(z)
\end{array} \\
\hline
\end{array}
$$

Solution: We first examine the second hint. Note that, for arbitrary random variablest the value of $\mathbb{P}(z=z)$.

$$
\begin{aligned}
F_{Z}(z-1) & =\mathbb{P}(Z \leq z-1) \\
F_{Z}(z) & =\mathbb{P}(Z \leq z)=\mathbb{P}(Z \leq z-1)+\mathbb{P}(Z=z) \\
& =F_{Z}(z)-\mathbb{P}(Z=z)
\end{aligned}
$$

Re-arranging terms yields the following useful result:

$$
\begin{equation*}
\mathbb{P}(Z=z)=F_{Z}(z)-F_{Z}(z-1) \tag{1}
\end{equation*}
$$

Now, let us derive an expression for the c.m.f. of Z; that is, we examine

$$
F_{Z}(z):=\mathbb{P}(Z \leq z)=\mathbb{P}(\max \{X, Y\} \leq z)
$$

Note that $\{\max \{X, Y\} \leq z\} \Longrightarrow\{X \leq z\} \cap\{Y \leq z\}$. [See below for a short proof of this fact, if you are still a bit confused.] Therefore, we may write:

$$
\begin{aligned}
F_{Z}(z) & =\mathbb{P}(\{X \leq z\} \cap\{Y \leq y\}) \\
& =\mathbb{P}(X \leq z) \mathbb{P}(Y \leq z)=F_{X}(z) \cdot F_{Y}(z)
\end{aligned}
$$

where we have utilized the independence of X and Y to split the probability of the intersection into a product of two probabilities. Additionally, since X and Y follow the same distribution, they will have the same c.m.f. and therefore

$$
F_{Z}(z)=\left[F_{X}(z)\right]^{2}
$$

Since $X \sim \operatorname{Unif}\{1, \cdots, k\}$ we have that

$$
F_{X}(z)=\frac{z}{k} ; \quad z \in\{1, \ldots, k\}
$$

and so

$$
\begin{equation*}
F_{Z}(z)=\frac{z^{2}}{k^{2}} \tag{2}
\end{equation*}
$$

Now, by equation (1), we find

$$
\begin{aligned}
\mathbb{P}(Z=z) & =F_{Z}(z)-F_{Z}(z-1) \\
& =\frac{z^{2}}{k^{2}}-\frac{(z-1)^{2}}{k^{2}} \\
& =\frac{z^{2}-(z-1)^{2}}{k^{2}} \\
& =\frac{z^{2}-\left(z^{2}-2 z+1\right)}{k^{2}} \\
& =\frac{\not z^{2}-\not z^{2}+2 z-1}{k^{2}}=\frac{2 z-1}{k^{2}}
\end{aligned}
$$

This is, of course, only valid for $z \in\{1, \ldots, k\}$ meaning our full p.m.f. for Z is

$$
\mathbb{P}(Z=z)= \begin{cases}\frac{2 z-1}{k^{2}} & \text { if } z \in\{1, \ldots, k\} \\ 0 & \text { otherwise }\end{cases}
$$

b) Verify that your expression from part (a) sums to 1 , when summed over the
appropriate values. It may be useful to recall that

$$
\sum_{i=1}^{w} i=\frac{w(w+1)}{2}
$$

Solution: We compute

$$
\begin{aligned}
\sum_{\text {all } z} \mathbb{P}(Z=z) & =\sum_{z=1}^{k} \frac{2 z-1}{k^{2}} \\
& =\frac{1}{k^{2}}\left[2 \sum_{z=1}^{k} z-\sum_{z=1}^{k} 1\right] \\
& =\frac{1}{k^{2}}\left[\not 2 \cdot \frac{k(k+1)}{2}-k\right] \\
& =\frac{1}{k^{2}}\left(k^{2}+\not k^{\prime}-\not k^{\prime}\right)=\frac{k^{2}}{k^{2}}=1 \checkmark
\end{aligned}
$$

c) Compute $\mathbb{E}(Z)$. It may be useful to recall that

$$
\sum_{i=1}^{w} i^{2}=\frac{w(w+1)(2 w+1)}{6}
$$

Solution: We compute

$$
\begin{aligned}
\mathbb{E}(Z) & =\sum_{\text {all } z} z \mathbb{P}(Z=z) \\
& =\sum_{z=1}^{k} z \cdot \frac{2 z-1}{k^{2}} \\
& =\frac{1}{k^{2}} \sum_{z=1}^{k}\left(2 z^{2}-z\right) \\
& =\frac{1}{k^{2}}\left[2 \sum_{z=1}^{k} z^{2}-\sum_{z=1}^{k} z\right] \\
& =\frac{1}{k^{2}}\left[2 \cdot \frac{k(k+1)(2 k+1)}{6}-\frac{k(k+1)}{2}\right] \\
& =\frac{1}{k}\left[\frac{(k+1)(2 k+1)}{3}-\frac{k+1}{2}\right] \\
& =\frac{1}{k}\left[\frac{2(k+1)(2 k+1)-3(k+1)}{6}\right] \\
& =\frac{(k+1)[2(2 k+1)-3]}{6 k}
\end{aligned}
$$

$$
=\frac{(k+1)(4 k+2-3)}{6 k}=\frac{(k+1)(4 k-1)}{6 k}
$$

Extra Problems

Problem 3: Continuous Joint Density

Let X and Y be continuous random variables with joint density function

$$
f_{X, Y}(x, y)= \begin{cases}c(x+y) & 0<x<1, \quad 1<y<3 \\ 0 & \text { otherwise }\end{cases}
$$

where $c>0$ is an as-of-yet undetermined constant.
(a) What is the value of c ?

Solution:

$$
\begin{aligned}
1 & =\int_{1}^{3} \int_{0}^{1} c(x+y) \mathrm{d} x \mathrm{~d} y \\
& =c \int_{1}^{3}\left[\frac{1}{2} x^{2}+x y\right]_{x=0}^{x=1} \mathrm{~d} y \\
& =c \int_{1}^{3}\left(\frac{1}{2}+y\right) \mathrm{d} y \\
& =c\left[\frac{1}{2}(3-1)+\frac{1}{2}(9-1)\right]=5 c
\end{aligned}
$$

Thus, we have $c=1 / 5$.
(b) Set up the integral to find $P(X+Y<3)$. Do not evaluate.

Solution: If we draw a picture of the region, we have a rectangle with the line $y=3-x$ going through it. The area we want to integrate over is the area below the line and inside the rectangle.

$$
\begin{aligned}
P(X+Y<3) & =P(Y<3-X) \\
& =\int_{0}^{1} \int_{1}^{3-x} \frac{1}{5}(x+y) \mathrm{d} y \mathrm{~d} x
\end{aligned}
$$

Alternatively, we could have integrated with respect to $d x d y$ instead (and, in that case, written two integrals).

$$
P(X+Y<3)=\int_{1}^{2} \int_{0}^{1} \frac{1}{5}(x+y) \mathrm{d} x \mathrm{~d} y+\int_{2}^{3} \int_{0}^{3-y} \frac{1}{5}(x+y) \mathrm{d} x \mathrm{~d} y
$$

(c) Use the definition of independence to prove whether or not X and Y are independent.

Solution: Random variables X and Y are independent if

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

We'll calculate the marginals of X and Y and see if $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$. For the marginal of X :

$$
\begin{aligned}
f_{X}(x) & =\int_{y} f_{X, Y}(x, y) \mathrm{d} y \\
& =\int_{1}^{3} \frac{1}{5}(x+y) \mathrm{d} y \\
& =\frac{1}{5}\left[x y+\frac{1}{2} y^{2}\right]_{y=1}^{y=3} \\
& =\frac{1}{5}\left[3 x+\frac{9}{2}-x-\frac{1}{2}\right]=\frac{1}{5}(2 x+4)
\end{aligned}
$$

which is valid for $x \in(0,1)$, meaning

$$
f_{X}(x)= \begin{cases}\frac{1}{5}(2 x+4) & \text { if } x \in(0,1) \\ 0 & \text { otherwise }\end{cases}
$$

For the marginal of Y :

$$
\begin{aligned}
f_{Y}(y) & =\int_{x} f_{X, Y}(x, y) \mathrm{d} x \\
& =\int_{0}^{1} \frac{1}{5}(x+y) \mathrm{d} x \\
& =\frac{1}{5}\left[\frac{1}{2} x^{2}+x y\right]_{x=0}^{x=1} \\
& =\frac{1}{5}\left[\frac{1}{2}+y\right]=\frac{1}{10}(2 y+1)
\end{aligned}
$$

which is valid for $y \in(1,3)$, meaning

$$
f_{Y}(y)= \begin{cases}\frac{1}{10}(2 y+1) & \text { if } y \in(1,3) \\ 0 & \text { otherwise }\end{cases}
$$

Thus, we see that

$$
\begin{aligned}
f_{X}(x) \cdot f_{Y}(y) & =\left\{\begin{array} { l l }
{ \frac { 1 } { 5 } (2 x + 4) } & { \text { if } x \in (0 , 1) } \\
{ 0 } & { \text { otherwise } }
\end{array} \cdot \left\{\begin{array}{ll}
\frac{1}{10}(2 y+1) & \text { if } y \in(1,3) \\
0 & \text { otherwise }
\end{array}\right.\right. \\
& = \begin{cases}\frac{1}{50}(2 x+4)(2 y+1) & \text { if } 0<x<1,1<y<3 \\
0 & \text { otherwise }\end{cases} \\
& \begin{cases}\frac{1}{50}(4 x y+2 x+8 y+4) & \text { if } 0<x<1,1<y<3 \\
0 & \text { otherwise }\end{cases} \\
& \neq f_{X, Y}(x, y)
\end{aligned}
$$

Therefore, X and Y are NOT independent.

Problem 4: Discrete Joint Density
Suppose that X and Y are jointly distributed discrete random variables with joint probability mass function (P.M.F.) given by

$$
p_{X, Y}(x, y)= \begin{cases}\binom{5}{x}\left(\frac{1}{2}\right)^{y+5} & \text { if } x \in\{0,1,2,3,4,5\}, y \in\{1,2, \cdots\} \\ 0 & \text { otherwise }\end{cases}
$$

(a) Verify that $p_{X, Y}(x, y)$ is a valid joint pmf.

Solution:

$$
\begin{aligned}
\sum_{y=1}^{\infty} \sum_{x=0}^{x=5}\binom{5}{x}\left(\frac{1}{2}\right)^{y+5} & =\sum_{y=1}^{\infty}\left[\sum_{x=0}^{5}\binom{5}{x}\left(\frac{1}{2}\right)^{5}\right]\left(\frac{1}{2}\right)^{y} \\
& =\sum_{y=1}^{\infty} 1 \cdot\left(\frac{1}{2}\right)^{y}=1 \checkmark
\end{aligned}
$$

(b) Identify the marginal distributions of X and Y by name, being sure to include any/all relevant parameter(s).

Solution: The easiest way to approach this part is to note that the joint pmf factors as

$$
p_{X, Y}(x, y)=\left[\binom{5}{x}\left(\frac{1}{2}\right)^{5}\right] \cdot\left[\left(\frac{1}{2}\right)^{y}\right]
$$

which shows that $X \sim \operatorname{Bin}(5,1 / 2)$ and $Y \sim \operatorname{Geom}(1 / 2)$. Alternatively, we could have summed over x and y separately to obtain the marginal p.m.f.'s.
(c) Use your answer to part (b) to compute $\mathbb{E}[X]$ and $\mathbb{E}[Y]$.

Solution: $\mathbb{E}[X]=5 / 2 ; \mathbb{E}(Y)=2$.
(d) Find $\operatorname{Corr}(X, Y)$. Hint: based in your answer to part (b), you should not need Parts (d) and (e) involve to do any algebra.
material from Thursday's lecture.

Solution: By part (b) we see that $X \perp Y$, meaning $\operatorname{Corr}(X, Y)=0$.
(e) Compute $\mathbb{E}[X Y]$. Hint: You can either perform a double summation, or you can use your answer to part (d).

Solution: In general, $\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$. Since $\operatorname{Cov}(X, Y)=0$ by part (d) above, we see that $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]=5 / 2 \cdot 2=5$.

