PSTAT 120A, Summer 2022: Practice Problems 7

Week 5

Conceptual Review

(a) Why is the sum of two random variables also a random variable?
(b) What is the convolution formula?
(c) What is an indicator? How do indicators and expectations mesh?

Problem 1: Sum Useful Results
Prove each of the following results using the convolution formula.
(a) If $X \sim \operatorname{Pois}\left(\lambda_{X}\right)$ and $Y \sim \operatorname{Pois}\left(\lambda_{Y}\right)$ with $X \perp Y$, then $(X+Y) \sim \operatorname{Pois}\left(\lambda_{X}+\lambda_{Y}\right)$.

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

Solution: Since X and Y are discrete, we shall utilize the Discrete Convolution. First note that

$$
\begin{aligned}
p_{X, Y}(x, y) & =p_{X}(x) \cdot p_{Y}(y) \\
& =e^{-\lambda_{x}} \cdot \frac{\lambda_{x}^{x}}{x!} \cdot \mathbb{1}_{\{x \in\{0,1,2, \cdots\}} \cdot e^{-\lambda_{y}} \cdot \frac{\lambda_{x}^{y}}{y!} \cdot \mathbb{1}_{\{y \in\{0,1,2, \cdots\}} \\
p_{X, Y}(x, z-x) & =e^{-\lambda_{x}} \cdot \frac{\lambda_{x}^{x}}{x!} \cdot \mathbb{1}_{\{x \in\{0,1,2, \cdots\}} \cdot e^{-\lambda_{y}} \cdot \frac{\lambda_{y}^{z-x}}{(z-x)!} \cdot \mathbb{1}_{\{z-x \in\{0,1,2, \cdots\}}
\end{aligned}
$$

Let's focus on the product of the indicators for a minute. In order for the joint to be nonzero, we require both $x \in\{0,1,2 \cdots\}$ and $z-x \in\{0,1,2, \cdots\}$. This second condition implies $x \in$ $\{z, z-1, z-2, \cdots\}$ which, when combined with the first condition, requires $x \in\{0,1, \cdots, z\}$. For an $x \in\{0,1, \cdots, z\}$ we have

$$
\begin{aligned}
p_{X, Y}(x, y) & =e^{-\lambda_{x}} \cdot \frac{\lambda_{x}^{x}}{x!} \cdot e^{-\lambda_{y}} \cdot \frac{\lambda_{y}^{z-x}}{(z-x)!} \\
& =e^{-\left(\lambda_{x}+\lambda_{y}\right)} \cdot \frac{1}{x!(z-x)!} \cdot \lambda_{y}^{z} \cdot\left(\frac{\lambda_{x}}{\lambda_{y}}\right)^{x}
\end{aligned}
$$

and so

$$
\begin{align*}
p_{Z}(z) & =\sum_{x} p_{X, Y}(x, z-x) \\
& =\sum_{x=0}^{z} e^{-\left(\lambda_{x}+\lambda_{y}\right)} \cdot \frac{1}{x!(z-x)!} \cdot \lambda_{y}^{z} \cdot\left(\frac{\lambda_{x}}{\lambda_{y}}\right)^{x} \\
& =e^{-\left(\lambda_{x}+\lambda_{y}\right)} \cdot \lambda_{y}^{z} \cdot \sum_{x=0}^{z} \frac{1}{x!\cdot(z-x)!}\left(\frac{\lambda_{x}}{\lambda_{y}}\right)^{x} \\
& =e^{-\left(\lambda_{x}+\lambda_{y}\right)} \cdot \lambda_{y}^{z} \cdot \frac{1}{z!} \sum_{x=0}^{z} \frac{z!}{x!\cdot(z-x)!}\left(\frac{\lambda_{x}}{\lambda_{y}}\right)^{x} . \tag{1}\\
& =e^{-\left(\lambda_{x}+\lambda_{y}\right)} \cdot \lambda_{y}^{z} \cdot \frac{1}{z!} \sum_{x=0}^{z}\binom{z}{x}\left(\frac{\lambda_{x}}{\lambda_{y}}\right)^{x}(1)^{z-x}
\end{align*}
$$

$$
\begin{aligned}
& =e^{-\left(\lambda_{x}+\lambda_{y}\right)} \cdot \lambda_{y}^{z} \cdot \frac{1}{z!} \cdot\left(1+\frac{\lambda_{x}}{\lambda_{y}}\right)^{z} \\
& =e^{-\left(\lambda_{x}+\lambda_{y}\right)} \cdot \frac{1}{z!} \cdot \lambda \not / y\left(\frac{\lambda_{x}+\lambda_{y}}{\lambda / y}\right)^{z} \\
& =e^{-\left(\lambda_{x}+\lambda_{y}\right)} \cdot \frac{\left(\lambda_{x}+\lambda_{y}\right)^{z}}{z!}
\end{aligned}
$$

The state space of Z is clearly $S_{Z}=\{0,1, \cdots\}$ meaning, in conjunction with the p.m.f. found above, $Z \sim \operatorname{Pois}\left(\lambda_{x}+\lambda_{y}\right)$
(b) If $X \sim \operatorname{Gamma}\left(r_{x}, \lambda\right)$ and $Y \sim \operatorname{Gamma}\left(r_{y}, \lambda\right)$ with $X \perp Y$, then $(X+Y) \sim$ $\operatorname{Gamma}\left(r_{X}+r_{Y}, \lambda\right)$.

Hint: You will need to use the so called Beta Integral:

Solution: We note

$$
\begin{aligned}
f_{X, Y}(x, y) & =f_{X}(x) \cdot f_{Y}(y) \\
& =\frac{\lambda^{r_{x}}}{\Gamma\left(r_{x}\right)} \cdot x^{r_{x}-1} \cdot e^{-\lambda x} \cdot \mathbb{1}_{\{x \geq 0\}} \cdot \frac{\lambda^{r_{y}}}{\Gamma\left(r_{y}\right)} \cdot y^{r_{y}-1} \cdot e^{-\lambda y} \cdot \mathbb{1}_{\{y \geq 0\}} \\
& =\frac{\lambda^{r_{x}+r_{y}}}{\Gamma\left(r_{x}\right) \cdot \Gamma\left(r_{y}\right)} \cdot x^{r_{x}-1} \cdot y^{r_{y}-1} \cdot e^{-\lambda(x+y)} \cdot \mathbb{1}_{\{x \geq 0, y \geq 0\}} \\
f_{X, Y}(x, z-x) & =\frac{\lambda^{r_{x}+r_{y}}}{\Gamma\left(r_{x}\right) \cdot \Gamma\left(r_{y}\right)} \cdot x^{r_{x}-1} \cdot(z-x)^{r_{y}-1} \cdot e^{-\lambda(x(x+z-\not x)} \cdot \mathbb{1}_{\{x \geq 0, z-x \geq 0\}} \\
& =\frac{\lambda_{x}^{r_{x}+r_{y}}}{\Gamma\left(r_{x}\right) \cdot \Gamma\left(r_{y}\right)} \cdot x^{r_{x}-1} \cdot(z-x)^{r_{y}-1} \cdot e^{-\lambda z} \cdot \mathbb{1}_{\{0 \leq x \leq z\}} \\
f_{Z}(z) & =\int_{-\infty}^{\infty} f_{X, Y}(x, z-x) \mathrm{d} x \\
& =\int_{0}^{z} \frac{\lambda_{x}+r_{y}}{\Gamma\left(r_{x}\right) \cdot \Gamma\left(r_{y}\right)} \cdot x^{r_{x}-1} \cdot(z-x)^{r_{y}-1} \cdot e^{-\lambda z} \mathrm{~d} x \\
& =\frac{\lambda_{x}+r_{y}}{\Gamma\left(r_{x}\right) \cdot \Gamma\left(r_{y}\right)} \cdot e^{-\lambda z} \cdot \int_{0}^{z} x^{r_{x}-1} \cdot(z-x)^{r_{y}-1} \mathrm{~d} x
\end{aligned}
$$

To evaluate this integral, we would like to use the hint. As such, let's substitute u such that $x=z u$; i.e. $u=(x / z)$ and so $\mathrm{d} u=(1 / z) \mathrm{d} z$:

$$
\begin{aligned}
\int_{0}^{z} x^{r_{x}-1} \cdot(z-x)^{r_{y}-1} \mathrm{~d} x & =\int_{0}^{1}(z u)^{r_{x}-1} z^{r_{y}-1} \cdot(1-u)^{r_{y}-1} \cdot z \mathrm{~d} u \\
& =z^{r_{x}+r_{y}-1} \cdot \int_{0}^{1} u^{r_{x}-1}(1-u)^{\left.r_{y}-1\right)} \mathrm{d} u \\
& =z^{r_{x}+r_{y}-1} \cdot \frac{\Gamma\left(r_{x}\right) \cdot \Gamma\left(r_{y}\right)}{\Gamma\left(r_{x}+r_{y}\right)}
\end{aligned}
$$

Therefore,

$$
f_{Z}(z)=\frac{\lambda^{r_{x}+r_{y}}}{\Gamma\left(r_{x}\right) \cdot \Gamma\left(r_{y}\right)} \cdot e^{-\lambda z} \cdot \int_{0}^{z} x^{r_{x}-1} \cdot(z-x)^{r_{y}-1} \mathrm{~d} x
$$

$$
\begin{aligned}
& \frac{\lambda^{r_{x}+r_{y}}}{\frac{\Gamma\left(r_{x}\right) \cdot \Gamma\left(r_{y}\right)}{r_{x}}} \cdot e^{-\lambda z} \cdot z^{r_{x}+r_{y}-1} \cdot \frac{\Gamma\left(r_{x}\right)-\Gamma\left(r_{y}\right)}{\Gamma\left(r_{x}+r_{y}\right)} \\
& \frac{\lambda^{r_{x}+r_{y}}}{\Gamma\left(r_{x}+r_{y}\right)} \cdot z^{r_{x}+r_{y}-1} \cdot e^{-\lambda z}
\end{aligned}
$$

which, since $S_{Z}=[0, \infty)$, allows us to conclude that $Z \sim \operatorname{Gamma}\left(r_{x}+r_{y}, \lambda\right)$.

Problem 2: The Elevator Problem

Suppose that, in a particular 10 -story building, 5 people enter an elevator on the Ground Floor (let us call this "Floor 0"). We assume that people get off the elevator at a random floor, independently of all other people in the elevator. (Assume that nobody leaves on the Ground Floor) In this problem, we shall work toward answering the question: what is the expected number of floors at which the elevator will stop?
a) Let X denote the number of floors at which the elevator will stop. Define appropriate indicators $\mathbb{1}_{j}$ such that X can be expressed as a sum of these indicators.

Hint: We can assign indicators to people, or assign them to floors. Which will be better?

Solution: We take $\mathbb{1}_{j}=\left\{\begin{array}{ll}1 & \text { if the elevator stops at floor } j \\ 0 & \text { otherwise }\end{array}\right.$ for $j=1,2, \ldots, 10$. In this way,

$$
X=\sum_{j=1}^{10} \mathbb{1}_{j}
$$

b) Using your expression from part (a), write $\mathbb{E}(X)$ in terms of $\mathbb{E}\left(\mathbb{1}_{1}\right), \cdots, \mathbb{E}\left(\mathbb{1}_{10}\right)$. (You don't need to find the expectation of the indicators just yet; you'll do that in the next part.)

Solution: By the linearity of expectation, $\mathbb{E}(X)=\mathbb{E}\left(\sum_{j=1}^{10} \mathbb{1}_{j}\right)=\sum_{j=1}^{10} \mathbb{E}\left(\mathbb{1}_{j}\right)$.
c) Now, compute $\mathbb{E}\left(\mathbb{1}_{1}\right), \mathbb{E}\left(1_{2}\right), \ldots, \mathbb{E}\left(1_{10}\right)$, and use this to answer the original question of "what is the expected number of floors at which the elevator will stop?"

Hint: Using symmetry, you can find an expression for $\mathbb{E}\left(\mathbb{1}_{j}\right)$ for an arbitrary $j=1,2, \ldots, 10$.

Solution: Recall that, for the indicator $\mathbb{1}_{A}$ of the event $A, \mathbb{E}\left(\mathbb{1}_{A}\right)=\mathbb{P}(A)$. Therefore,

$$
\begin{aligned}
\mathbb{E}\left(\mathbb{1}_{j}\right) & =\mathbb{P}(\text { elevator stops at floor } j) \\
& =1-\mathbb{P}(\text { elevator does not stop at floor } j) \\
& =1-\mathbb{P}(\text { nobody gets off at floor } j)
\end{aligned}
$$

$$
\begin{aligned}
& =1-\mathbb{P}(\text { all } 5 \text { people get off at one of the other } 9 \text { floors }) \\
& =1-\left(\frac{9}{10}\right)^{5}
\end{aligned}
$$

Therefore, we see

$$
\mathbb{E}(X)=\sum_{j=1}^{10} \mathbb{E}\left(\mathbb{1}_{j}\right)=\sum_{j=1}^{10}\left[1-\left(\frac{9}{10}\right)^{5}\right]=10 \cdot\left[1-\left(\frac{9}{10}\right)^{5}\right] \approx 4.0951
$$

Key Takeaway: This problem (hopefully) illustrates one of the many reasons why indicators are very useful, especially in the context of expectations. One can extend this logic to actually compute the variance of the number of floors at which the elevator will stop!

Problem 3: Poisson Predictions

Suppose that the number of calls arriving at a call center follows a Poisson Process with an average of 10 calls per hour.
(a) What is the probability that exactly 20 calls arrive in a 90 -minute interval?

Solution: Let X denote the number of calls in a 90 -minute interval; since 90 minutes $=(3 / 2)$ hours, we know that X follows a Poisson distribution with rate

$$
\lambda_{X}=10 \cdot \frac{3}{2}=15
$$

Therefore,

$$
\mathbb{P}(X=20)=e^{-15} \cdot \frac{15^{20}}{20!} \approx 0.04181
$$

(b) What is the probability that the $2^{\text {nd }}$ and $4^{\text {th }}$ calls arrive within 1 hour of each other?

Solution: Let T denote the time, in hours, between the $2^{\text {nd }}$ and $4^{\text {th }}$ calls. We know then that $T \sim \operatorname{Gamma}(2,10)$ meaning

$$
\begin{aligned}
\mathbb{P}(T<1) & =\int_{0}^{1} \frac{10^{2}}{\Gamma(2)} t e^{-10 t} \mathrm{~d} t \\
& =100 \cdot\left[-\frac{1}{100} e^{-10 t}(10 t+1)\right]_{t=0}^{t=1}=1-11 e^{-10} \approx 0.9995
\end{aligned}
$$

(c) What is the distribution of the amount of time between the $2^{\text {nd }}$ and $3^{\text {rd }}$ calls as measured in minutes?

Solution: If we let S denote the time in hours between the $2^{\text {nd }}$ and $3^{\text {rd }}$ calls, then we know that $S \sim \operatorname{Exp}(10)$. Additionally, we know that 1 hour $=60$ minutes; thus, if M measures the time in minutes between the $2^{\text {nd }}$ and $3^{\text {rd }}$ calls then M is a transformation of S defined by way of

$$
M=60 S
$$

We know that if $X \sim \operatorname{Exp}(\lambda)$ then $(c X) \sim \operatorname{Exp}(\lambda / c)$; hence

$$
M \sim \operatorname{Exp}(1 / 6)
$$

As a quick sanity check: we know that the average time between the $2^{\text {nd }}$ and $3^{\text {rd }}$ calls is $(1 / 10)$ of an hour, we can see that in fact $(1 / 10)$ of an hour is 6 minutes, which is equal to the expectation of M.
(d) If T_{1} measures the time in minutes until the $1^{\text {st }}$ call and S denotes the time in minutes between the $2^{\text {nd }}$ and $4^{\text {th }}$ calls, what is $f_{T_{1}, S}(t, s)$, the joint p.d.f. of $\left(T_{1}, S\right)$?

Solution: By a similar reasoning as we used in part (c),

$$
\begin{aligned}
T_{1} & \sim \operatorname{Exp}(1 / 6) \\
S & \sim \operatorname{Gamma}(2,1 / 6)
\end{aligned}
$$

We also know that $T_{1} \perp S$, meaning

$$
\begin{aligned}
f_{T_{1}, S}(t, s) & =f_{T_{1}}(t) \cdot f_{S}(s) \\
& =\left(\frac{1}{6}\right) \cdot e^{-\frac{1}{6} t} \cdot \mathbb{1}_{\{t \geq 0\}} \cdot \frac{\left(\frac{1}{6}\right)^{2}}{\Gamma(2)} \cdot s^{2-1} \cdot e^{-\frac{1}{6} s} \cdot \mathbb{1}_{\{s \geq 0\}} \\
& =\left(\frac{1}{6}\right)^{3} s e^{-\frac{1}{6}(t+s)} \cdot \mathbb{1}_{\{t \geq 0, s \geq 0\}}
\end{aligned}
$$

Extra Problems

Problem 4: Great Expectations

Now that we have learned a bit more about joint distributions, consider the following logic in the context of a bivariate pair (X, Y) of continuous random variables:

- On the one hand, we can integrate out y, find the marginal $f_{X}(x)$ of X, and then compute

$$
\mathbb{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) \mathrm{d} x
$$

- On the other hand, we can also use the two-dimensional LOTUS with $g(x, y)=$ x to compute

$$
\mathbb{E}[X]=\iint_{\mathbb{R}^{2}} x f_{X, Y}(x, y) \mathrm{d} A
$$

A question I often get asked is: "which of these is correct?" The answer is, in fact"both of them!" Prove that these two formulations of $\mathbb{E}[X]$ are equivalent.

It may be easier to start with the second formulation, and then show that it is equal to the first.

Solution: Start with the second formulation: in other words, begin by writing

$$
\mathbb{E}[X]=\iint_{\mathbb{R}^{2}} x \cdot f_{X, Y}(x, y) \mathrm{d} A
$$

In. this case it doesn't really matter which variable we integrate with respect to first; thus, let's (somewhat arbitrarily) use $\mathrm{d} y \mathrm{~d} x$. That is, we write

$$
\begin{aligned}
\mathbb{E}[X] & =\iint_{\mathbb{R}^{2}} x \cdot f_{X, Y}(x, y) \mathrm{d} y \mathrm{~d} x \\
& =\int_{-\infty}^{\infty} x\left(\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x\right) \mathrm{d} y
\end{aligned}
$$

$$
=\int_{-\infty}^{\infty} x f_{X}(x) \mathrm{d} x
$$

since $f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y$.

Problem 5: Hot Cross Moments

Given an n-dimensional random vector $\overrightarrow{\boldsymbol{X}}$, we define the $\boldsymbol{k}_{\mathbf{1}}, \cdots, \boldsymbol{k}_{\boldsymbol{n}}{ }^{\text {th }}$ crossmoment (sometimes called a mixed-moment) of \vec{X} to be

$$
\mu_{k_{1}, \cdots, k_{n}}(\overrightarrow{\boldsymbol{X}}):=\mathbb{E}\left[\prod_{i=1}^{n} X_{i}^{k_{i}}\right]=\mathbb{E}\left[X_{1}^{k_{1}} \times X_{2}^{k_{2}} \times \cdots \times X_{n}^{k_{n}}\right]
$$

For example, the $(3,5)$ cross moment of a bivariate random vector is

$$
\mu_{3,5}(\overrightarrow{\boldsymbol{X}})=\mathbb{E}\left[X_{1}^{3} \cdot X_{2}^{5}\right]
$$

(a) Suppose the elements of an n-dimensional random vector $\overrightarrow{\boldsymbol{X}}$ are independent. Additionally, let $\mu_{k_{i}}\left(X_{i}\right):=\mathbb{E}\left[X_{i}^{k_{i}}\right]$ denote the $k_{i}{ }^{\text {th }}$ moment of X_{i}. Derive a relationship between $\mu_{k_{1}, \cdots, k_{n}}(\overrightarrow{\boldsymbol{X}})$ and the $\mu_{k_{i}}\left(X_{i}\right)^{\prime} s$.

Solution: Crucially, we know that functions of independent random variables are independent. Since the X_{i} 's are independent [by assumption], we have that the random variables $\left\{\left(X_{i}\right)^{k_{i}}\right\}_{i=1}^{n}$ are also independent. This allows us to write the expectation of their product as the product of their expectations; hence,

$$
\begin{aligned}
\mu_{k_{1}, \cdots, k_{n}}(\overrightarrow{\boldsymbol{X}}) & :=\mathbb{E}\left[\prod_{i=1}^{n} X_{i}^{k_{i}}\right]=\mathbb{E}\left[X_{1}^{k_{1}} \times X_{2}^{k_{2}} \times \cdots \times X_{n}^{k_{n}}\right] \\
& =\prod_{i=1}^{n} \mathbb{E}\left[X_{i}^{k_{i}}\right]=\prod_{i=1}^{n} \mu_{k_{i}}\left(X_{i}\right)
\end{aligned}
$$

(b) Is it true that for two n-dimensional random vectors $\overrightarrow{\boldsymbol{X}}$ and $\overrightarrow{\boldsymbol{Y}}$

$$
\mu_{k_{1}, \cdots, k_{n}}(\overrightarrow{\boldsymbol{X}}+\overrightarrow{\boldsymbol{Y}})=\mu_{k_{1}, \cdots, k_{n}}(\overrightarrow{\boldsymbol{X}})=+\mu_{k_{1}, \cdots, k_{n}}(\overrightarrow{\boldsymbol{Y}})
$$

If so, provide a brief proof. If not, explain why not.
Solution: We write:

$$
\mu_{k_{1}, \cdots, k_{n}}(\overrightarrow{\boldsymbol{X}}+\overrightarrow{\boldsymbol{Y}}):=\mathbb{E}\left[\prod_{i=1}^{n}\left(X_{i}+Y_{i}\right)^{k_{i}}\right]=\mathbb{E}\left[\left(X_{1}+Y_{1}\right)^{k_{1}} \times\left(X_{2}+Y_{2}\right)^{k_{2}} \times \cdots \times\left(X_{n}+Y_{n}\right)^{k_{n}}\right]
$$

In general, $\left(X_{i}+Y_{i}\right)^{k_{i}} \neq X_{i}^{k_{i}}+Y_{i}^{k_{i}}$. Hence, the provided statement is false.

