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PSTAT 120A, Summer 2022: Practice Problems 10: Final Review, Part I
Week 2

Conceptual Review

(a) Review the conceptual questions from the previous Discussion Worksheets!
(b) What are the different notions of conditional p.m.f.’s?
(c) What is the difference between E[𝑋 | 𝑌 = 𝑦] and E[𝑋 | 𝑌 ]?
(d) What is the Law of Iterated Expectation? What is the analog for variances?
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1 Conditional Distributions and Expectations

Problem 1: Continuous Conditioning

Let (𝑋,𝑌 ) be a continuous bivariate random vector with joint p.d.f. given by

𝑓𝑋,𝑌 (𝑥, 𝑦) =
{
𝑐 · 𝑥𝑦 if 0 < 𝑥 < 𝑦 < 1
0 otherwise

where 𝑐 > 0 is an as-of-yet undetermined constant.

(a) Find the value of 𝑐.

Solution: We first sketch the support:

𝒙

𝒚

1

1

Either order of integration is fine:∬
R2

𝑓𝑋,𝑌 (𝑥, 𝑦) d𝑥 = 𝑐

∫ 1

0

∫ 𝑦

0
𝑥𝑦 d𝑥 d𝑦 = 𝑐

∫ 1

0

1
2
𝑦3 d𝑦 =

𝑐

8
!
= 1 =⇒ 𝑐 = 8

(b) Find 𝑓𝑌 (𝑦), the marginal p.d.f. of 𝑌 .

Solution:

𝑓𝑌 (𝑦) =
∫ ∞

−∞
𝑓𝑋,𝑌 (𝑥, 𝑦) d𝑥

=

∫ 𝑦

0
8𝑥𝑦 d𝑥 = 4𝑦3 =⇒ 𝑓𝑌 (𝑦) = 4𝑦3 · 1{𝑦∈[0,1] }

(c) Find 𝑓𝑋 |𝑌 (𝑥 | 𝑦), the conditional density of 𝑋 given 𝑌 = 𝑦.

Solution:

𝑓𝑋 |𝑌 (𝑥 | 𝑦) =
𝑓𝑋,𝑌 (𝑥, 𝑦)
𝑓𝑌 (𝑦)

=
8𝑥𝑦 · 1{0≤𝑥≤𝑦 } · 1{𝑦∈[0,1] }

4𝑦3 · 1{𝑦∈[0,1] }
=

2𝑥
𝑦2 · 1{0≤𝑥≤𝑦 }
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(d) Compute E[𝑋] using the Law of Iterated Expectations.

Solution:

E[𝑋] = E [E[𝑋 | 𝑌 ]]

E[𝑋 | 𝑌 = 𝑦] =
∫ 𝑦

0

2𝑥2

𝑦2 d𝑥 =
2
3
· 1
𝑦2 · 𝑦3 =

2
3
𝑌

E[𝑋 | 𝑌 ] = 2
3
𝑌

E[𝑌 ] =
∫ 1

0
4𝑦4 d𝑦 =

4
5

E[𝑋] = E
[
2
3
𝑌

]
=

2
3
E[𝑌 ] = 2

3
· 4

5
=

8
15

(e) Find 𝑓𝑋 (𝑥), and verify your answer to part (d).

Solution:

𝑓𝑋 (𝑥) =
∫ ∞

−∞
𝑓𝑋,𝑌 (𝑥, 𝑦) d𝑦 =

∫ 1

𝑥

8𝑥𝑦 d𝑦 = 4𝑥(1 − 𝑥2) =⇒ 𝑓𝑋 (𝑥) = 4𝑥(1 − 𝑥2) · 1{𝑥∈[0,1] }

E[𝑋] :=
∫ ∞

−∞
𝑥 𝑓𝑋 (𝑥) d𝑥 =

∫ 1

0
4𝑥2(1 − 𝑥2) d𝑥 =

4
3
− 4

5
=

8
15
✓
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Problem 2: Discrete Conditioning

Let (𝑋,𝑌 ) be a discrete bivariate random vector with joint p.m.f. given by

𝑓𝑋,𝑌 (𝑥, 𝑦) =
{
𝑐 · 𝑥𝑦 if 𝑥 ∈ {1, 2, 3}, 𝑦 ∈ {1, 2, 3}
0 otherwise

where 𝑐 > 0 is an as-of-yet undetermined constant.

(a) Find the value of 𝑐.

Solution: ∑︁
𝑥

∑︁
𝑦

𝑝𝑋,𝑌 (𝑥, 𝑦) = 𝑐

3∑︁
𝑥=1

3∑︁
𝑦=1

𝑥𝑦 = 𝑐 · 3 · 4
2

· 3 · 4
2

= 36𝑐 !
= 1 =⇒ 𝑐 =

1
36

(b) Find 𝑝𝑌 (𝑦), the marginal p.m.f. of 𝑌 .

Solution:

𝑝𝑌 (𝑦) =
∑︁
𝑥

𝑝𝑋,𝑌 (𝑥, 𝑦) =
3∑︁

𝑥=1

𝑥𝑦

36
=

𝑦

36
· 6 =⇒ 𝑦

6
· 1{𝑦∈{1,2,3}}

(c) Find 𝑝𝑋 |𝑌 (𝑥 | 𝑦), the conditional p.m.f. of 𝑋 given 𝑌 = 𝑦.

Solution:

𝑝𝑋 |𝑌 (𝑥 | 𝑦) =
𝑝𝑋,𝑌 (𝑥, 𝑦)
𝑝𝑌 (𝑦)

=

𝑥𝑦

36 · 1{𝑥∈{1,2,3}} · 1{𝑦∈{1,2,3}}
𝑦

6 · 1{𝑦∈{1,2,3}}

=
𝑥

6
· 1{𝑥∈{1,2,3}}

(d) Compute 𝑝𝑋 (𝑥), and determine whether or not 𝑋 and 𝑌 are independent. Try
to make an argument using only your answer to part (c), and 𝑝𝑋 (𝑥).

Solution:

𝑝𝑋 (𝑥) =
∑︁
𝑦

𝑝𝑋,𝑌 (𝑥, 𝑦) =
3∑︁

𝑦=1

𝑥𝑦

36
=

𝑥

36
· 6 =⇒ 𝑥

6
· 1{𝑥∈{1,2,3}}

The familiar argument goes: since 𝑝𝑋 (𝑥) · 𝑝𝑌 (𝑦), we have 𝑋 ⊥ 𝑌 . The argument involving
conditional densities goes: since 𝑝𝑋 |𝑌 (𝑥 | 𝑦) = 𝑝𝑋 (𝑥), 𝑋 ⊥ 𝑌 .
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Problem 3: Iterations!

In each of the following parts, you will be provided with the conditional distribu-
tion of (𝑋 | 𝑌 ) and the marginal distribution 𝑌 . Using the provided information,
compute E[𝑋] and Var(𝑋).

(a) (𝑋 | 𝑌 ) ∼ Bin(𝑌, 𝑝); 𝑌 ∼ Pois(`)

Solution:

E[𝑋 | 𝑌 ] = 𝑌 𝑝

E[𝑌 ] = `

E[𝑋] = E[E[𝑋 | 𝑌 ]] = E[𝑌 𝑝] = 𝑝E[𝑌 ] = 𝑝`

Var(𝑋 | 𝑌 ) = 𝑌 𝑝(1 − 𝑝)
Var(𝑌 ) = `

Var(𝑋) = E[Var(𝑋 | 𝑌 )] + Var(E[𝑋 | 𝑌 ])
= E[𝑌 𝑝(1 − 𝑝)] + Var(𝑌 𝑝) = 𝑝(1 − 𝑝)E[𝑌 ] + 𝑝2Var(𝑌 ) = 𝑝(1 − 𝑝)` + 𝑝2` = 𝑝`

(b) (𝑋 | 𝑌 ) ∼ Exp(1/𝑌 ); 𝑌 ∼ Gamma(𝑟, _)

Solution:

E[𝑋 | 𝑌 ] = 𝑌

E[𝑌 ] = 𝑟

_

E[𝑋] = E[E[𝑋 | 𝑌 ]] = E[𝑌 ] = 𝑟

_

Var(𝑋 | 𝑌 ) = 𝑌2

Var(𝑌 ) = 𝑟

_2

Var(𝑋) = E[Var(𝑋 | 𝑌 )] + Var(E[𝑋 | 𝑌 ])
= E

[
𝑌2] + Var(𝑌 )

= Var(𝑌 ) + (E[𝑌 ])2 + Var(𝑌 ) = 2𝑟 + 𝑟2

_2
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2 General Problems (includes Cond. Distn’s)

Problem 4: Axiomatic Proof

Given a probability space (Ω, F ,P) and events 𝐴, 𝐵 ∈ F , prove the following
identity:

P(𝐴 | 𝐵∁) = 1 − P(𝐴
∁)

P(𝐵∁)
+ P(𝐴

∁ ∩ 𝐵)
P(𝐵∁)

Solution:

P(𝐴 | 𝐵∁) = P(𝐴 ∩ 𝐵∁)
P(𝐵∁)

=

P
[
(𝐴∁ ∪ 𝐵)∁

]
P(𝐵∁)

=
1 − P(𝐴∁ ∩ 𝐵)

P(𝐵∁)

=
1 − P(𝐴∁) − P(𝐵) + P(𝐴∁ ∩ 𝐵)

P(𝐵∁)

=
1 − P(𝐵) − P(𝐴∁) + P(𝐴∁ ∩ 𝐵)

P(𝐵∁)

=
1 − P(𝐵)
P(𝐵∁)

− P(𝐴
∁)

P(𝐵∁)
+ P(𝐴

∁ ∩ 𝐵)
P(𝐵∁)

=
P(𝐵∁)
P(𝐵∁)

− P(𝐴
∁)

P(𝐵∁)
+ P(𝐴

∁ ∩ 𝐵)
P(𝐵∁)

= 1 − P(𝐴
∁)

P(𝐵∁)
+ P(𝐴

∁ ∩ 𝐵)
P(𝐵∁)

Problem 5: Variance of Sums

Using only first principles (i.e. taking care not to use any previously-derived results
pertaining to variance of sums of random variables), derive an expression for

Var

(
𝑛∑︁
𝑖=1

(−1)𝑖𝑋𝑖

)
Simplify as much as you can.
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Solution:

Var

(
𝑛∑︁
𝑖=1

(−1)𝑖𝑋𝑖

)
= Cov ©«

𝑛∑︁
𝑖=1

(−1)𝑖𝑋𝑖 ,

𝑛∑︁
𝑗=1

(−1) 𝑗𝑋 𝑗
ª®¬

=
∑︁
𝑖, 𝑗

(−1)𝑖+ 𝑗Cov(𝑋𝑖 , 𝑋 𝑗)

=
∑︁
𝑖= 𝑗

(−1)𝑖+ 𝑗Cov(𝑋𝑖 , 𝑋 𝑗) +
∑︁
𝑖≠ 𝑗

(−1)𝑖+ 𝑗Cov(𝑋𝑖 , 𝑋 𝑗)

=

𝑛∑︁
𝑖=1

Var(𝑋𝑖) + 2
∑︁
𝑖< 𝑗

(−1)𝑖+ 𝑗Cov(𝑋𝑖 , 𝑋 𝑗)‘

Problem 6: Faces of the Same Die

A fair 𝑘−sided die is rolled 𝑛 times, where where 𝑛 and 𝑘 are fixed natural numbers.
Let 𝑋 denote the number of faces that appear exactly three times. Find E[𝑋].

Solution: We can proceed using indicators assigned to the faces of the die. Let

1 𝑗 =

{
1 if face 𝑗 appears exactly three times
0 otherwise

Then

𝑋 =

𝑘∑︁
𝑗=1
1 𝑗

and so

E[𝑋] = E


𝑘∑︁
𝑗=1
1 𝑗

 =

𝑘∑︁
𝑖=1
E[1 𝑗]

We now turn our attention to computing E[1 𝑗]. This amounts to computing the probability that face 𝑗

(for 𝑗 = 1, 2, · · · , 𝑘) appears exactly twice. This can be computing using the Binomial distribution; let
𝑌 𝑗 denote the number of times face 𝑗 appears in the 𝑛 rolls of the die; then 𝑌 𝑗 ∼ Bin(𝑛, 1/𝑘) and so

E[1 𝑗] = P(𝑌 𝑗 = 3) =
(
𝑛

3

) (
1
𝑘

)3 (
𝑘 − 1
𝑘

)𝑛−3
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Therefore,

E[𝑋] = E


𝑘∑︁
𝑗=1
1 𝑗

 =

𝑘∑︁
𝑗=1
E[1 𝑗]

=

𝑘∑︁
𝑗=1

(
𝑛

3

) (
1
𝑘

)3 (
𝑘 − 1
𝑘

)𝑛−3

= 𝑘 ·
(
𝑛

3

) (
1
𝑘

)3 (
𝑘 − 1
𝑘

)𝑛−3

Problem 7: A Useful Result

Hint: We know the
distribution of (𝑋 + 𝑌 ).

Suppose 𝑋 ∼ Pois(_) and 𝑌 ∼ Pois(`) with 𝑋 ⊥ 𝑌 . Find P(𝑋 = 𝑘 | 𝑋 + 𝑌 = 𝑛)
for natural numbers 𝑛 and 𝑘 with 𝑘 ≤ 𝑛, and use this to recognize the conditional
distribution of (𝑋 | 𝑋 + 𝑌 = 𝑛). Be sure to include any/all relevant parameter(s)!

Solution: We begin with the definition of conditional probability:

P(𝑋 = 𝑘 | 𝑋 + 𝑌 = 𝑛) = P(𝑋 = 𝑘, 𝑋 + 𝑌 = 𝑛)
P(𝑋 + 𝑌 = 𝑛)

Now, we know that (𝑋 + 𝑌 ) ∼ Pois(_ + `) [this was proved on one of the Section Worksheets.] Thus,
we only need to focus on the numerator. Note that

P(𝑋 = 𝑘, 𝑋 + 𝑌 = 𝑛) = P(𝑋 = 𝑘, 𝑌 = 𝑛 − 𝑘)

This is particularly useful, because we can now utilize the independence of 𝑋 and 𝑌 to write

P(𝑋 = 𝑘, 𝑋 + 𝑌 = 𝑛) = P(𝑋 = 𝑘, 𝑌 = 𝑛 − 𝑘)
= P(𝑋 = 𝑘) · P(𝑌 = 𝑛 − 𝑘)

= 𝑒−_
_𝑘

𝑘!
· 𝑒−` · `𝑛−𝑘

(𝑛 − 𝑘)!

Therefore, putting everything together,

P(𝑋 = 𝑘 | 𝑋 + 𝑌 = 𝑛) = P(𝑋 = 𝑘, 𝑋 + 𝑌 = 𝑛)
P(𝑋 + 𝑌 = 𝑛)

=

�
�𝑒−_

_𝑘

𝑘!
·��𝑒−` · `𝑛−𝑘

(𝑛 − 𝑘)!

����
𝑒−(_+`) · (_ + `)𝑛

𝑛!

=
𝑛!

𝑘! · (𝑛 − 𝑘)! ·
_𝑘`𝑛−𝑘

(_ + `)𝑘 · (_ + `)𝑛−𝑘

=

(
𝑛

𝑘

) (
_

_ + `

) 𝑘 (
1 − _

_ + `

)𝑛−𝑘
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Thus, we see

(𝑋 | 𝑋 + 𝑌 = 𝑛) ∼ Bin
(
𝑛,

_

_ + `

)
By the way, note that _/(_ + `) < 1 so it is in fact a valid probability value.
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Problem 8: Discrete Joint

Let (𝑋,𝑌 ) be a discrete bivariate random vector with joint p.m.f. (probability mass
function) given by

𝑝𝑋,𝑌 (𝑥, 𝑦) =
{
𝑐 · 𝑥𝑦 if 𝑥 ∈ {1, 2, 3}, 𝑦 ∈ {1, 2, 3, 4}
0 otherwise

where 𝑐 > 0 is an as-of-yet undetermined constant.

(a) Find the value of 𝑐.

Solution: We require the joint p.m.f. to sum to unity. As such, we compute

3∑︁
𝑥=1

4∑︁
𝑦=1

𝑥𝑦 =

( 3∑︁
𝑥=1

𝑥

) ©«
4∑︁

𝑦=1
𝑦
ª®¬ =

3 · 4
2

· 4 · 5
2

= 60 =⇒ 𝑐 =
1
60

(b) Compute P(𝑋 = 𝑌 ).

Solution: Note that
{𝑋 = 𝑌 } =

⋃
𝑘

{𝑋 = 𝑘, 𝑌 = 𝑘}

Since the events in the union on the RHS are all disjoint, we may take the probability of both sides
and invoke the third axiom of probability to see

P(𝑋 = 𝑌 ) =
∑︁
𝑘

P(𝑋 = 𝑘, 𝑌 = 𝑘)

=

3∑︁
𝑘=1

𝑝𝑋,𝑌 (𝑘, 𝑘) =
3∑︁

𝑘=1

1
60

𝑘2 =
1
60

· 3 · 4 · 7
6

=
7

30

Problem 9: Discrete Convolution

Let 𝑋 ∼ Geom(𝑝1) and𝑌 ∼ Geom(𝑝2) with 𝑋 ⊥ 𝑌 . Derive the p.m.f. of 𝑍 := 𝑋+𝑌 .
(Note: This will NOT be the Negative Binomial p.m.f., unless 𝑝1 = 𝑝2)

Solution: Let’s introduce the simplifying notation 𝑞1 := 1− 𝑝1 and 𝑞2 := 1− 𝑝2. Then, by the Discrete
Convolution formula,

𝑝𝑍 (𝑧) =
∑︁
𝑥

𝑝𝑋 (𝑥)𝑝𝑌 (𝑧 − 𝑥)

=
∑︁
𝑥

𝑞𝑥−1
1 𝑝1 · 𝑞𝑧−𝑥−1

2 𝑝2 =
𝑝1𝑝2
𝑞1𝑞2

· 𝑞𝑧2 ·
∑︁
𝑥

(
𝑞1
𝑞2

) 𝑥
Let’s figure out the limits of our sum. We require both 𝑥 ∈ {1, 2, · · · } and 𝑧 − 𝑥 ∈ {1, 2, · · · }; the
latter condition states 𝑥 ∈ {𝑧 − 1, 𝑧 − 2, · · · } meaning, combined with the first constraint, we have
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𝑥 ∈ {1, · · · , 𝑧 − 1}. Therefore:

𝑝𝑍 (𝑧) =
𝑝1𝑝2
𝑞1𝑞2

· 𝑞𝑧2 ·
𝑧−1∑︁
𝑥=1

(
𝑞1
𝑞2

) 𝑥
=

𝑝1𝑝2
𝑞1𝑞2

· 𝑞𝑧2 ·

(
𝑞1
𝑞2

)
−

(
𝑞1
𝑞2

) 𝑧
1 −

(
𝑞1
𝑞2

)
where, of course, 𝑝𝑍 (𝑧) = 0 whenever 𝑧 ∉ {2, 3, · · · }.

Problem 10: Waitin’ in Line

Alex and Drew are waiting in two separate lines at Dean Coffee. Suppose that the
time it takes for Alex to reach the counter follows an Exp(_𝐴) distribution and the
time it takes for Drew to reach the counter Exp(_𝐷) distribution. Further suppose
that the two lines move independently of each other. What is the probability that
Alex reaches the counter before Drew does?

Solution: Let 𝑋 denote Alex’s waiting time and let𝑌 denote Drew’s waiting times. Then 𝑋 ∼ Exp(_𝐴)
and 𝑌 ∼ Exp(_𝐷) with 𝑋 ⊥ 𝑌 . Additionally, we see P(𝑋 < 𝑌 ), which is a double integral of 𝑓𝑋,𝑌 (𝑥, 𝑦)
over the region:

𝒙

𝒚

𝒚 = 𝒙

Additionally, since 𝑋 ⊥ 𝑌 we have that 𝑓𝑋,𝑌 (𝑥, 𝑦) = 𝑓𝑋 (𝑥) · 𝑓𝑌 (𝑦) = _𝐴_𝐷𝑒
−_𝐴·𝑥−_𝐷 ·𝑦 · 1{𝑥≥0, 𝑦≥0}

meaning

P(𝑋 < 𝑌 ) =
∫ ∞

0

∫ ∞

𝑥

_𝐴_𝐷𝑒
−_𝐴·𝑥−_𝐷 ·𝑦 d𝑦 d𝑥

= _𝐴

∫ ∞

0
𝑒−_𝐴·𝑥

∫ ∞

𝑥

_𝐷𝑒
−_𝐷 ·𝑦 d𝑦 d𝑥

= _𝐴

∫ ∞

0
𝑒−_𝐴·𝑥𝑒−_𝐷 ·𝑥 d𝑥 = _𝐴

∫ ∞

0
𝑒−(_𝐴+_𝐷)𝑥 d𝑥 =

_𝐴

_𝐴 + _𝐷

Note, as a quite sanity check, that this quantity is always bounded above by 1 and below by 0, meaning
it is a valid probability.
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Problem 11: Gamma Gamma Gamma

(a) Show that for any 𝑟 > 0, Γ(𝑟) = (𝑟 − 1)Γ(𝑟 − 1)

Solution: Start with
Γ(𝑟) :=

∫ ∞

0
𝑥𝑟−1𝑒−𝑥 d𝑥

Integrate by parts with 𝑢 = 𝑥𝑟−1 and d𝑣 = 𝑒−𝑥 , so d𝑢 = (𝑟 − 1)𝑥𝑟−2 and v = −𝑒−𝑥 , so

Γ(𝑟) :=
∫ ∞

0
𝑥𝑟−1𝑒−𝑥 d𝑥

=
��������:0[
−𝑥𝑟−1𝑒−𝑥

] 𝑥=∞
𝑥=0 +

∫ ∞

0
(𝑟 − 1)𝑥𝑟−2𝑒−𝑥 d𝑥

= (𝑟 − 1) +
∫ ∞

0
𝑥 (𝑟−1)−1𝑒−𝑥 d𝑥 =: (𝑟 − 1)Γ(𝑟 − 1)

(b) Use part (a) to argue that Γ(𝑛) = (𝑛 − 1)! whenever 𝑛 ∈ N.

Solution: If 𝑛 ∈ N, then

Γ(𝑛) = (𝑛 − 1)Γ(𝑛 − 1)
= (𝑛 − 1) (𝑛 − 2)Γ(𝑛 − 2)
= (𝑛 − 1) (𝑛 − 2) (𝑛 − 3)Γ(𝑛 − 3)
...

= (𝑛 − 1) (𝑛 − 2) (𝑛 − 3) · · · 3 × 2 × 1 = (𝑛 − 1)!

(c) Hint: Relate the integral to a
Normal density.

Show that Γ(1/2) =
√
𝜋.

Solution: Definitionally,

Γ(1/2) =
∫ ∞

0
𝑥−

1/2𝑒−𝑥 d𝑥 =

∫ ∞

0

1
√
𝑥
𝑒−𝑥 d𝑥

Let 𝑢 =
√
𝑥 so that d𝑢 = 1/(2

√
𝑥) d𝑥 and hence d𝑥 = 2𝑢 d𝑢. Then:

Γ(1/2) =
∫ ∞

0

1
√
𝑥
𝑒−𝑥 d𝑥

=

∫ ∞

0

1
𝑢
𝑒−𝑢

2 · 2𝑢 d𝑢

= 2
∫ ∞

0
𝑒−𝑢

2
d𝑢 =

∫ ∞

−∞
𝑒−𝑢

2
d𝑢

=

∫ ∞

−∞
𝑒
− 1

2· (1/2) 𝑢
2

d𝑢
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We recognize the integrand as the variable portion of a N(0, 1/2) distribution, meaning we should
write

Γ(1/2) =
∫ ∞

−∞
𝑒
− 1

2· (1/2) 𝑢
2

d𝑢

=

√︂
2𝜋 · 1

2
·
����������������:1∫ ∞

−∞

1√︃
2𝜋 · 1

2

exp

{
− 1

2 · 1
2
𝑢2

}
d𝑢 =

√︂
2𝜋 · 1

2
=

√
𝜋

(d) Compute Γ(5/2).

Solution: We use parts (a) and (c) in conjunction:

Γ

(
5
2

)
=

3
2
· 1

2
· Γ

(
1
2

)
=

3
√
𝜋

4

Problem 12: It’s Giving... Gamma

Hint: Don’t try to prove this
directly; use probability!

Prove the following identity:

d𝑛

d𝑡𝑛

(
_

_ − 𝑡

)𝑟 ����
𝑡=0

=
Γ(𝑟 + 𝑛)
Γ(𝑟) · _𝑛

Solution: Notice that the quantity on the LHS is the 𝑛th moment of a Gamma(𝑟, _) distribution.
Therefore, set 𝑋 ∼ Gamma(𝑟, _); let’s see if we can compute E[𝑋𝑛] directly.

E[𝑋𝑛] =
∫ ∞

0
𝑥𝑛 · _𝑟

Γ(𝑟) 𝑥
𝑟−1𝑒−_𝑥 d𝑥

=
_𝑟

Γ(𝑟) ·
∫ ∞

0
𝑥 (𝑟+𝑛)−1𝑒−_𝑥 d𝑥

=
_𝑟

Γ(𝑟) ·
Γ(𝑟 + 𝑛)
_𝑟+𝑛

·
∫ ∞

0

_𝑟+𝑛

Γ(𝑟 + 𝑛) 𝑥
(𝑟+𝑛)−1𝑒−_𝑥 d𝑥

=
_𝑟

_𝑟+𝑛
· Γ(𝑟 + 𝑛)

Γ(𝑟) =
Γ(𝑟 + 𝑛)
Γ(𝑟) · _𝑛

Therefore, we have
d𝑛

d𝑡𝑛

(
_

_ − 𝑡

)𝑟 ����
𝑡=0

= E[𝑋𝑛] = Γ(𝑟 + 𝑛)
Γ(𝑟) · _𝑛

thereby completing the proof.
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Problem 13: Sums (ASV, 9.21)

Let 𝑋1, · · · , 𝑋500 be i.i.d. random variables with expected value 2 and variance 3.
The random variables 𝑌1, · · · , 𝑌500 are independent of the 𝑋𝑖 variables, also i.i.d.,
but they have expected value 2 and variance 2. Use the CLT to estimate

P

( 500∑︁
𝑖=1

𝑋𝑖 >

500∑︁
𝑖=1

𝑌𝑖 + 50

)

Solution: Let 𝑍𝑖 = 𝑋𝑖 − 𝑌𝑖 . Then

E[𝑍𝑖] = E[𝑋𝑖] − E[𝑌𝑖] = 2 − 2 = 0
Var(𝑍𝑖) = Var(𝑋𝑖 − 𝑌𝑖) = Var(𝑋𝑖) + Var(𝑌𝑖) = 3 + 2 = 5

We have

P

( 500∑︁
𝑖=1

𝑋𝑖 >

500∑︁
𝑖=1

𝑌𝑖 + 50

)
= P

( 500∑︁
𝑖=1

𝑍𝑖 > 50

)
Applying the central limit theorem we get

P

( 500∑︁
𝑖=1

𝑍𝑖 > 50

)
= P

( ∑500
𝑖=1 𝑍𝑖√

500 · 5
>

50
√

500 · 5

)
≈ 1 −Φ

(
50

√
500 · 5

)
= 1 −Φ(1) = Φ(−1) ≈ 0.1587

Problem 14: Wald’s Identity

Hint: Condition on {𝑁 = 𝑛}Prove Wald’s Identity: if 𝑋1, 𝑋2, · · · are i.i.d. random variables with finite mean,
and 𝑁 is a nonnegative integer-valued random variable independent of the 𝑋𝑖’s (also
with finite mean), then

E

[
𝑁∑︁
𝑖=1

𝑋𝑖

]
= E[𝑁] · E[𝑋1]

Note that we cannot directly apply linearity, since the upper index of summation is
random.
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Solution: Following the hint, we first compute

E

[
𝑁∑︁
𝑖=1

𝑋𝑖

����� 𝑁 = 𝑛

]
=

𝑛∑︁
𝑖=1
E[𝑋𝑖] = 𝑛 · E[𝑋1]

which means

E

[
𝑁∑︁
𝑖=1

𝑋𝑖

����� 𝑁
]
= 𝑁 · E[𝑋1]

Therefore, applying the Law of Iterated Expectations,

E

[
𝑁∑︁
𝑖=1

𝑋𝑖

]
= E

{
E

[
𝑁∑︁
𝑖=1

𝑋𝑖

����� 𝑁
]}

= E[𝑁 · E[𝑋1]] = E[𝑁] · E[𝑋1]

where we have utilized the independence of 𝑁 and the 𝑋𝑖’s.

Problem 15: Let’s Chalk About It (modified from ASV 6.3)

For each lecture, a professor chooses between white, yellow, and purple chalk, inde-
pendently of previous choices. Each day she chooses white chalk with probability
0.5, yellow chalk with probability 0.4, and purple chalk with probability 0.1.

(a) Suppose we observe this professor for the next 10 days. Define appropriate
random variables to count the number of times the professor chooses each color
of chalk. Identify by name the marginal distributions, taking care to include
any/all relevant parameter(s)!

Solution: Let 𝑋𝑊 denote the number of times the professor chooses white chalk; 𝑋𝑌 denote the
number of times the professor chooses yellow chalk, and 𝑋𝑃 denote the number of times the
professor chooses purple chalk. Then

𝑋𝑊 ∼ Bin(10, 0.5)
𝑋𝑌 ∼ Bin(10, 0.4)
𝑋𝑃 ∼ Bin(10, 0.1)

(b) Identify the joint distribution of the random variables you defined in part (a) by
name (yes, it is a distribution we have encountered before). Be sure to include
any/all relevant parameter(s)!

Solution: We can see that (𝑋𝑊 , 𝑋𝑌 , 𝑋𝑃) follows the Multinomial Distribution. Specifically,

(𝑋𝑊 , 𝑋𝑌 , 𝑋𝑃) ∼ Multinomial(𝑛 = 10, 𝑟 = 3, 𝑝𝑊 = 0.5, 𝑝𝑌 = 0.4, 𝑝𝑃 = 0.1)

(c) What is the probability that over the next 10 days she will choose white chalk
5 times, yellow chalk 4 times, and purple chalk 1 time?
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Solution: Using part (b), we find

P(𝑋𝑊 = 5, 𝑋𝑌 = 4, 𝑋𝑃 = 1) =
(

10
5, 4, 1

)
·
(
1
2

)5
·
(
2
5

)4
·
(

1
10

)1
=

63
625

≈ 0.1008

(d) What is the probability that over the next 10 days she will choose white chalk
exactly 9 times?

Solution: Using the same notation as in part (c), we wish to compute P(𝑋𝑊 = 9). By part (a) we
know that 𝑋𝑊 ∼ Bin(10, 0.5) so

P(𝑋𝑊 = 9) =
(
10
9

)
·
(
1
2

)10
=

5
512

≈ 0.009766
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Problem 16: Continuous Computations

Suppose 𝑋 is a random variable that has probability density function (p.d.f.) given
by

𝑓𝑋 (𝑥) =
{
𝑐𝑒−𝑥 if 𝑥 ≥ 2
0 otherwise

where 𝑐 > 0 is an as-of-yet undetermined constnat.

(a) Find the value of 𝑐.

Solution: 𝑐 = 𝑒2 (this is actually the two-parameter exponential distribution that was briefly
discussed previously)

(b) Identify the distribution of 𝑌 := 𝑋 − 2.

Solution: 𝑌 ∼ Exp(1)

(c) Compute E[𝑋]

Solution: We could integrate directly, or use part (b) to see

E[𝑋] = E[𝑌 + 2] = E[𝑌 ] + 2 = 1 + 2 = 3

(d) Compute Var(𝑋)

Solution: Similarly as to part (c),

Var(𝑋) = Var(𝑋 + 2) = Var(𝑋) = 1

(e) Find 𝐹𝑋 (𝑥), the c.d.f. of 𝑋 .

Solution:

𝐹𝑋 (𝑥) = P(𝑋 ≤ 𝑥) = P(𝑌 + 2 ≤ 𝑥) = P(𝑌 ≤ 𝑥 − 2) =
{

1 − 𝑒−(𝑥−2) if 𝑥 ≥ 2
0 otherwise

(f) Find the density of 𝑊 := 𝑋2.

Solution: Using the C.D.F. Method,

𝐹𝑊 (𝑤) := P(𝑊 ≤ 𝑤) = P(𝑋2 ≤ 𝑤) = 𝐹𝑋 (
√
𝑤) − 𝐹𝑋 (−

√
𝑤) = 𝐹𝑋 (

√
𝑤)

𝑓𝑊 (𝑤) = 1
2
√
𝑤
𝑓𝑋 (

√
𝑤) = 1

2
√
𝑤
𝑒2𝑒−

√
𝑤 · 1{

√
𝑤≥2} =

𝑒2

2
· 1
√
𝑤

· 𝑒−
√
𝑤 · 1{𝑤≥4}
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(g) Compute 𝜋0.67, the 67th percentile of the distribution of 𝑋 .

Solution: We seek the value 𝜋0.67 such that 𝐹𝑋 (𝜋0.67) = 0.67; i.e.

1 − 𝑒−(𝜋0.67−2) = 0.67 =⇒ 𝜋0.67 = 2 − ln(0.33) ≈ 3.1

(h) Find 𝑀𝑋 (𝑡), the MGF of 𝑋

Solution: It is perhaps easiest to again use part (b):

𝑀𝑋 (𝑡) = 𝑀𝑌+2(𝑡) = 𝑒2𝑡 · 𝑀𝑌 (𝑡) = 𝑒2𝑡 ·
{

1
1−𝑡 if 𝑡 < 1
∞ otherwise

=

{
𝑒2𝑡

1−𝑡 if 𝑡 < 1
∞ otherwise

(i) Let 𝑌 be another random variable, independent of 𝑋 , that has the same p.d.f.
as 𝑋 . Find 𝑓𝑍 (𝑧), the p.d.f. of 𝑍 := 𝑋 + 𝑌

Solution: We use the convolution:

𝑓𝑍 (𝑧) =
∫ ∞

−∞
𝑓𝑋 (𝑥) 𝑓𝑌 (𝑧 − 𝑥) d𝑥

Along the way, we will need to simplify the indicator

1{𝑥≥2} · 1{𝑧−𝑥≥2} = 1{2≤𝑥≤𝑧−2}

meaning

𝑓𝑍 (𝑧) =
∫ 𝑧−2

2
𝑒2𝑒−𝑥 · 𝑒2𝑒−(𝑧−𝑥) d𝑥 = 𝑒4(𝑧 − 4)𝑒−𝑧 · 1{𝑧≥4}

(j) Suppose {𝑋𝑖}∞𝑖=1 is an i.i.d. collection of random variables, following the
distribution with p.d.f. given by 𝑓𝑋 (𝑥) above. If �̄�100 denotes the sample mean
of 100 of these 𝑋 ′

𝑖
s, approximate P( �̄�𝑛 > 3).

Solution: We use the CLT to conclude that

�̄�100
𝑑≈ N

(
3,

1
100

)
Therefore,

P( �̄�𝑛 > 3) = P
(
�̄�𝑛 − 3
1/10

> 0
)
≈ Φ(0) = 0.5

Problem 17: A Useful Result
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Let {𝑋𝑖} be an i.i.d. collection of random variables with mean ` and variance 𝜎2.
Show that

E

[
1

𝑛 − 1

𝑛∑︁
𝑖=1

(𝑋𝑖 − �̄�𝑛)2

]
= 𝜎2

where �̄�𝑛 := 𝑛−1 ∑𝑛
𝑖=1 𝑋𝑖 denotes the sample mean.

Solution: First note, by Linearity,

E

[
1

𝑛 − 1

𝑛∑︁
𝑖=1

(𝑋𝑖 − �̄�𝑛)2

]
=

1
𝑛 − 1

𝑛∑︁
𝑖=1
E[(𝑋𝑖 − 𝑋

2
𝑛]

This, we first compute

E[(𝑋𝑖 − 𝑋𝑛)2] = E[(𝑋𝑖 − ` + ` − 𝑋𝑛)2]
= E[(𝑋𝑖 − `)2] + E[(𝑋𝑛 − `)2] + 2E[(𝑋𝑖 − `) (` − 𝑋𝑛)]
= Var(𝑋𝑖) + Var(𝑋𝑛) + 2E[(𝑋𝑖 − `) (` − 𝑋𝑛)]

= 𝜎2 + 𝜎2

𝑛
+ 2E[(𝑋𝑖 − `) (` − 𝑋𝑛)]

Hence,

E

[
1

𝑛 − 1

𝑛∑︁
𝑖=1

(𝑋𝑖 − �̄�𝑛)2

]
=

1
𝑛 − 1

𝑛∑︁
𝑖=1
E[(𝑋𝑖 − 𝑋

2
𝑛]

=
1

𝑛 − 1

𝑛∑︁
𝑖=1

[
𝜎2 + 𝜎2

𝑛
+ 2E[(𝑋𝑖 − `) (` − 𝑋𝑛)]

]
=

1
𝑛 − 1

{
𝑛𝜎2 + 𝜎2 + 2

𝑛∑︁
𝑖=1
E[(𝑋𝑖 − `) (` − 𝑋𝑛)]

}
=

1
𝑛 − 1

{
𝑛𝜎2 + 𝜎2 + 2E

[
𝑛∑︁
𝑖=1

[(𝑋𝑖 − `) (` − 𝑋𝑛)]
]}

=
1

𝑛 − 1

{
𝑛𝜎2 + 𝜎2 + 2E

[
(` − 𝑋𝑛)

𝑛∑︁
𝑖=1

(𝑋𝑖 − `)
]}

=
1

𝑛 − 1

{
𝑛𝜎2 + 𝜎2 + 2E

[
(` − 𝑋𝑛)𝑛(𝑋 𝑖 − `)

]}
=

1
𝑛 − 1

{
𝑛𝜎2 + 𝜎2 − 2𝑛E

[
(𝑋𝑛 − `) (𝑋 𝑖 − `)

]}
=

1
𝑛 − 1

{
𝑛𝜎2 + 𝜎2 − 2𝑛E

[
(𝑋𝑛 − `)2

]}
=

1
𝑛 − 1

{
𝑛𝜎2 + 𝜎2 − 2𝑛

𝜎2

𝑛

}
=

1
𝑛 − 1

[
𝑛𝜎2 + 𝜎2 − 2𝜎2] = 1

𝑛 − 1
(𝑛 − 1)𝜎2 = 𝜎2
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