PSTAT 120A, Summer 2022: Practice Problems 5

Week 4

Conceptual Review

(a) Why is a function of a random variable also a random variable?
(b) If $Y:=g(X)$ where the distribution of X is known, must we first find $f_{Y}(y)$ before computing $\mathbb{E}[Y]$?
(c) How do transformations of discrete random variables work?
(d) Will transformations of discrete random variables always be discrete? Will transformations of continuous random variables always be continuous?

Problem 1: Two Interesting Results

(a) If $X \sim \operatorname{Exp}(\lambda)$ and $Y:=c X$ for some fixed constant $c>0$, show that $Y \sim \operatorname{Exp}(\lambda / c)$. For practice, derive the result in two ways: using the c.d.f. method, and using the Change of Variable formula.
(b) If $X \sim \operatorname{Gamma}(r, \lambda)$ and $Y:=c X$ for some fixed constant $c>0$, identify the distribution of Y by name, taking care to include any/all relevant parameter(s).

Problem 2: Raise The Roof- er, Ceiling!

Let $X \sim \operatorname{Exp}(\lambda)$, and define $Y:=\lceil X\rceil$. Identify the distribution of Y by name, taking care to include any/all relevant parameter(s). Recall that

Hint: Identify appropriate values for a and b such that
$\{\lceil X\rceil=y\}=\{a<X \leq b\}$
so, for instance, $\lceil\pi\rceil=4$.

Extra Problems

Problem 3: Rounding

The true concentration of radiation in a particular room (measured in counts per second) is uniformly distributed on the interval [0,10]. A Geiger counter is used to measure the radiation in this room, however it is very crude and only displays measurements rounded to the nearest integer value. Let X denote the true amount of radiation in the room, and Y denote the amount of radiation displayed on the Geiger counter.
(a) Is X discrete or continuous? What about Y ?
(b) Is it correct to say that Y is uniformly distributed on S_{Y}, the state space of Y ?
(c) Now, find the p.m.f. of Y.

Problem 4: Transformations
(CB, 2.1)
In each of the following find the p.d.f. of Y. Show that the p.d.f. integrates to 1 .
(a) $Y=X^{3}$ and $f_{X}(x)=42 x^{5}(1-x), 0<x<1$
(b) $Y=4 X+3$ and $f_{X}(x)=7 e^{-7 x}, 0<x<\infty$
(c) $Y=X^{2}$ and $f_{X}(x)=30 x^{2}(1-x)^{2}, 0<x<1$

Problem 5: Square-y Situation

Suppose $X \sim \operatorname{Unif}[-1,2]$ and $Y:=X^{2}$.
(a) Compute $\mathbb{E}[Y]$. Hint: If you remember certain properties about the uniform distribution, you can do this without computing any integrals.
(b) Find $f_{Y}(y)$, the probability density function (p.d.f.) of Y.

