PSTAT 120A, Summer 2022: Practice Problems 6

Week 4

Conceptual Review

(a) Geometrically, what does a double integral represent?
(b) How is the evaluation of a double integral contingent on the order of integration?
(c) What is a random vector?
(d) What is a joint p.d.f. / joint p.m.f.?

Problem 1: Picking Points

A point is picked uniformly from the region \mathcal{R} which is the area underneath the portion of the graph of $y=1-|x-1|$ lying in the first quadrant. Let X denote the x-coordinate of this point and let Y denote the y-coordinate of this point.
(a) Find $f_{X, Y}(x, y)$, the joint p.d.f. of (X, Y).
(b) Compute $\mathbb{E}[X Y]$.
(c) Find $f_{X}(x)$ and $f_{Y}(y)$, the marginal densities of X and Y respectively.

Problem 2: Dice Dice Baby

Suppose Xavier and Yolanda each roll a fair k-sided die (where $k \in \mathbb{N}$). Let X denote the result of Xavier's roll and Y denote the result of Yolanda's roll, and set $Z:=\max \{X, Y\}$.
a) Find the p.m.f. of Z.
b) Verify that your expression from part (a) sums to 1 , when summed over the appropriate values. It may be useful to recall that

Hint: First find the c.d.f. of Z and then consider how $F_{Z}(z)$ and $F_{Z}(z-1)$ can help us extract the value of $\mathbb{P}(Z=z)$.

$$
\sum_{i=1}^{w} i=\frac{w(w+1)}{2}
$$

c) Compute $\mathbb{E}(Z)$. It may be useful to recall that

$$
\sum_{i=1}^{w} i^{2}=\frac{w(w+1)(2 w+1)}{6}
$$

Extra Problems

Problem 3: Continuous Joint Density

Let X and Y be continuous random variables with joint density function

$$
f_{X, Y}(x, y)= \begin{cases}c(x+y) & 0<x<1, \quad 1<y<3 \\ 0 & \text { otherwise }\end{cases}
$$

where $c>0$ is an as-of-yet undetermined constant.
(a) What is the value of c ?
(b) Set up the integral to find $P(X+Y<3)$. Do not evaluate.
(c) Use the definition of independence to prove whether or not X and Y are independent.

Problem 4: Discrete Joint Density

Suppose that X and Y are jointly distributed discrete random variables with joint probability mass function (P.M.F.) given by

$$
p_{X, Y}(x, y)= \begin{cases}\binom{5}{x}\left(\frac{1}{2}\right)^{y+5} & \text { if } x \in\{0,1,2,3,4,5\}, y \in\{1,2, \cdots\} \\ 0 & \text { otherwise }\end{cases}
$$

(a) Verify that $p_{X, Y}(x, y)$ is a valid joint pmf.
(b) Identify the marginal distributions of X and Y by name, being sure to include any/all relevant parameter(s).
(c) Use your answer to part (b) to compute $\mathbb{E}[X]$ and $\mathbb{E}[Y]$.
(d) Find $\operatorname{Corr}(X, Y)$. Hint: based in your answer to part (b), you should not need to do any algebra.

Parts (d) and (e) involve material from Thursday's lecture.
(e) Compute $\mathbb{E}[X Y]$. Hint: You can either perform a double summation, or you can use your answer to part (d).

