PSTAT 120A, Summer 2022: Practice Problems 7

Week 5

Conceptual Review

(a) Why is the sum of two random variables also a random variable?
(b) What is the convolution formula?
(c) What is an indicator? How do indicators and expectations mesh?

Problem 1: Sum Useful Results

Prove each of the following results using the convolution formula.
(a) If $X \sim \operatorname{Pois}\left(\lambda_{X}\right)$ and $Y \sim \operatorname{Pois}\left(\lambda_{Y}\right)$ with $X \perp Y$, then $(X+Y) \sim \operatorname{Pois}\left(\lambda_{X}+\lambda_{Y}\right)$.
$(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}$

Hint: You will need to use the so-called Beta Integral:
$\int_{0}^{1} x^{r-1}(1-x)^{s-1} \mathrm{~d} x=\frac{\Gamma(r) \cdot \Gamma(s)}{\Gamma(r+s)}$

Hint: We can assign
indicators to people, or
assign them to floors. Which will be better?

Hint: Using symmetry, you can find an expression for $\mathbb{E}\left(\mathbb{1}_{j}\right)$ for an arbitrary $j=1,2, \ldots, 10$.

Key Takeaway: This problem (hopefully) illustrates one of the many reasons why indicators are very useful, especially in the context of expectations. One can extend this logic to actually compute the variance of the number of floors at which the elevator will stop!

Problem 3: Poisson Predictions

Suppose that the number of calls arriving at a call center follows a Poisson Process with an average of 10 calls per hour.
(a) What is the probability that exactly 20 calls arrive in a 90 -minute interval?
(b) What is the probability that the $2^{\text {nd }}$ and $4^{\text {th }}$ calls arrive within 1 hour of each other?
(c) What is the distribution of the amount of time between the $2^{\text {nd }}$ and $3^{\text {rd }}$ calls as measured in minutes?
(d) If T_{1} measures the time in minutes until the $1^{\text {st }}$ call and S denotes the time in minutes between the $2^{\text {nd }}$ and $4^{\text {th }}$ calls, what is $f_{T_{1}, S}(t, s)$, the joint p.d.f. of $\left(T_{1}, S\right)$?

Extra Problems

Problem 4: Great Expectations

Now that we have learned a bit more about joint distributions, consider the following logic in the context of a bivariate pair (X, Y) of continuous random variables:

- On the one hand, we can integrate out y, find the marginal $f_{X}(x)$ of X, and then compute

$$
\mathbb{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) \mathrm{d} x
$$

- On the other hand, we can also use the two-dimensional LOTUS with $g(x, y)=$ x to compute

$$
\mathbb{E}[X]=\iint_{\mathbb{R}^{2}} x f_{X, Y}(x, y) \mathrm{d} A
$$

A question I often get asked is: "which of these is correct?" The answer is, in fact"both of them!" Prove that these two formulations of $\mathbb{E}[X]$ are equivalent.

It may be easier to start with the second formulation, and then show that it is equal to the first.

Problem 5: Hot Cross Moments

Given an n-dimensional random vector $\overrightarrow{\boldsymbol{X}}$, we define the $\boldsymbol{k}_{\mathbf{1}}, \cdots, \boldsymbol{k}_{\boldsymbol{n}}{ }^{\text {th }}$ crossmoment (sometimes called a mixed-moment) of \vec{X} to be

$$
\mu_{k_{1}, \cdots, k_{n}}(\overrightarrow{\boldsymbol{X}}):=\mathbb{E}\left[\prod_{i=1}^{n} X_{i}^{k_{i}}\right]=\mathbb{E}\left[X_{1}^{k_{1}} \times X_{2}^{k_{2}} \times \cdots \times X_{n}^{k_{n}}\right]
$$

For example, the $(3,5)$ cross moment of a bivariate random vector is

$$
\mu_{3,5}(\overrightarrow{\boldsymbol{X}})=\mathbb{E}\left[X_{1}^{3} \cdot X_{2}^{5}\right]
$$

(a) Suppose the elements of an n-dimensional random vector $\overrightarrow{\boldsymbol{X}}$ are independent. Additionally, let $\mu_{k_{i}}\left(X_{i}\right):=\mathbb{E}\left[X_{i}^{k_{i}}\right]$ denote the $k_{i}{ }^{\text {th }}$ moment of X_{i}. Derive a relationship between $\mu_{k_{1}, \cdots, k_{n}}(\overrightarrow{\boldsymbol{X}})$ and the $\mu_{k_{i}}\left(X_{i}\right)^{\prime} s$.
(b) Is it true that for two n-dimensional random vectors $\overrightarrow{\boldsymbol{X}}$ and $\overrightarrow{\boldsymbol{Y}}$

$$
\mu_{k_{1}, \cdots, k_{n}}(\overrightarrow{\boldsymbol{X}}+\overrightarrow{\boldsymbol{Y}})=\mu_{k_{1}, \cdots, k_{n}}(\overrightarrow{\boldsymbol{X}})=+\mu_{k_{1}, \cdots, k_{n}}(\overrightarrow{\boldsymbol{Y}})
$$

If so, provide a brief proof. If not, explain why not.

