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PSTAT 120A, Summer 2022: Practice Problems 8
Week 5

Conceptual Review

(a) What is the MGF?
(b) Where does the name “MGF” come from?
(c) What is meant by the statement, “MGF’s uniquely determine distributions?”

Problem 1: The Laplace Distribution

The Laplace Distribution (sometimes called the Double Exponential Distribution)
has probability density function

𝑓𝑋 (𝑥) =
1
2
𝑒−|𝑥 |; 𝑥 ∈ (−∞,∞)

(a) Verify that 𝑓𝑋 (𝑥) is a valid p.d.f..
(b) Find 𝑀𝑋 (𝑡), the moment-generating function of 𝑋 where 𝑋 follows the Laplace

distribution. Be sure to specify bounds on your expression.

Now, in parts (c) through (e) we shall work toward identifying a closed-form expres-
sion for the 𝑛th moment of the Laplace distribution. For notational convenience, let
𝑋 be a random variable that follows the Laplace distribution.

(c) Hint: Use symmetryWhat should the value of E[𝑋𝑛] be where 𝑛 is odd?
(d) Write out the MacLaurin Series Expansion of 𝑀𝑋 (𝑡), as an infinite sum.
(e) Recall that

𝑀𝑋 (𝑡) = E[𝑒𝑡𝑋] = E
[ ∞∑︁
𝑘=0

(𝑡𝑋)𝑘
𝑘!

]
=

∞∑︁
𝑘=0

E[𝑋 𝑘]
𝑘!

· 𝑡𝑘

Match terms from your expression in part (d) to the summation above to extract
a formula for E[𝑋𝑛] when 𝑛 is even.

(f) It can be shown (through direct integration) that E[𝑋2] = 2. Check that your
answer in part (e) agrees with this fact.
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Extra Problems
Problem 2: Sum More Useful Results

Prove each of the following results. You may use either the convolution formula, or
MGF’s.

(a) If 𝑋,𝑌 i.i.d.∼ N(0, 1), then (𝑋 + 𝑌 ) ∼ N (0, 2).
(b) If 𝑋 ∼ Bin(𝑛1, 𝑝) and 𝑌 ∼ Bin(𝑛2, 𝑝) with 𝑋 ⊥ 𝑌 , then (𝑋 + 𝑌 ) ∼ Bin(𝑛1 +

𝑛2, 𝑝)

Problem 3: More MGF’s

Derive an expression for the MGF for each of the following distributions. (Yes, the
final answers are in the Lecture Slides, but we’re expecting you to derive them from
scratch on this question!)

(a) 𝑋 ∼ Exp(𝜆)
(b) 𝑋 ∼ Unif [𝑎, 𝑏]
(c) 𝑍 ∼ N(0, 1)
(d) Hint: Instead of performing a

direct integration, try and
relate 𝑋 to 𝑍 from part (c) via
a transformation and utilize
properties of MGF’s.

𝑋 ∼ N(𝜇, 𝜎2).

Problem 4: A Finite Distribution

Suppose 𝑋 is a discrete random variable that has moment-generating function
(MGF)

𝑀𝑋 (𝑡) =
(
2
5

)
𝑒−4.2𝑡 +

(
1
5

)
𝑒𝑡 +

(
2
5

)
𝑒3.7𝑡 ; 𝑡 ∈ (−∞,∞)

(a) Compute E[𝑋].
(b) Find the probability mass function (p.m.f.) of 𝑋 .
(c) Suppose 𝑌 = 0.5𝑋 + 2. Find the MGF of 𝑌 .
(d) Use your answer from part (c) to find the PMF of 𝑌 .


